Development plan for a persistent 1.3 GHz NMR magnet in a new MIRAI project on joint technology for HTS wires/cables in Japan

  • Yanagisawa, Y. (RIKEN) ;
  • Suetomi, Y. (Chiba University) ;
  • Piao, R. (RIKEN) ;
  • Yamagishi, K. (Sophia University) ;
  • Takao, T. (Sophia University) ;
  • Hamada, M. (Japan Superconductor Technology, Inc.) ;
  • Saito, K. (Japan Superconductor Technology, Inc.) ;
  • Ohki, K. (Sumitomo Electric Industries, Ltd.) ;
  • Yamaguchi, T. (Sumitomo Electric Industries, Ltd.) ;
  • Nagaishi, T. (Sumitomo Electric Industries, Ltd.) ;
  • Kitaguchi, H. (National Institute for Materials Science) ;
  • Ueda, H. (Okayama University) ;
  • Shimoyama, J. (Aoyama Gakuin University) ;
  • Ishii, Y. (Tokyo Institute of Technology) ;
  • Tomita, M. (Railway Technical Research Institute) ;
  • Maeda, H.
  • Published : 2018.07.31

Abstract

The present article briefly overviews the plan for a new project on joint technology for HTS wires/cables and describes the development plan for the world's highest field NMR magnet, which is a major development item in the project. For full-fledged social implementation of superconducting devices, high temperature superconducting (HTS) wire is a key technology since they can be cooled by liquid nitrogen and they can generate a super-high magnetic field of >>24 T at liquid helium temperatures. However, one of the major drawbacks of the HTS wires is their availability only in short lengths of a single piece of wire. This necessitates a number of joints being installed in superconducting devices, resulting in a difficult manufacturing process and a large joint resistance. In Japan, a large-scale project has commenced, including two technical demonstration items: (i) Development of superconducting joints between HTS wires, which are used in the world's highest field 1.3 GHz (30.5 T) NMR magnet in persistent current mode; the joints performance is evaluated based on NMR spectra for proteins. (ii) Development of ultra-low resistive joints between DC superconducting feeder cables for railway systems. The project starts a new initiative of next generation super-high field NMR development as well as that of realization of better superconducting power cables.

Keywords

References

  1. http://www.jst.go.jp/mirai/jp/uploads/saitaku2017/JPMJMI17A2_maeda.pdf
  2. T. C. Cosmus and M. Parizh, Advances in whole-body MRI magnets, IEEE Trans. Appl. Supercond. 21 (2011) 2104-2109 https://doi.org/10.1109/TASC.2010.2084981
  3. M. Uno, Chuo Shinkansen project using superconducting maglev system, Japan Railway & Transport Review 68 (2016) 14-25
  4. CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 176 (2012) 30-61
  5. D. C. Larbalestier, J. Jiang, U. P. Trociewitz, F. Kametani, C. Scheuerlein, M. Dalban-Canassy, M. Matras, P. Chen, N. C. Craig, P. J. Lee and E. E. Hellstrom, Isotropic round-wire multifilament cuprate superconductor for generation of magnetic fields above 30 T, Nat. Mat. 13 (2014) 1-7 https://doi.org/10.1038/nmat3857
  6. Y. Xiao, H. Ma, D. McElheny, S. Parthasarathy, F. Long, M Hoshi, R. Nussinov and Y. Ishii, $A{\beta}$(1-42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer's disease, Nat. Struct. Mol. Biol. 22 (2015) 499-505 https://doi.org/10.1038/nsmb.2991
  7. Superconductors drive trains, Nat. 542 (2017) 275
  8. K. Hashi, S. Ohki, S. Matsumoto, G. Nishijima, A. Goto, K. Deguchi, K. Yamada, T. Noguchi, S. Sakai, M. Takahashi, Y. Yanagisawa, S. Iguchi, T. Yamazaki, H. Maeda, R. Tanaka, T. Nemoto, H. Suematsu, T. Miki, K. Saito and T. Shimizu, Achievement of 1020 MHz NMR, J. Mag. Res. 256 (2015) 30-33. https://doi.org/10.1016/j.jmr.2015.04.009
  9. H. Maeda, T. Yamazaki, Y. Nishiyama., M. Hamada, K. Hashi, T. Shimizu, H. Suematsu, and Y. Yanagisawa, eMagRes 5 (2016) 1109.
  10. Y. Yanagisawa, H. Nakagome, K. Tennmei, M. Hamada, M. Yoshikawa, A. Otsuka, M. Hosono, T. Kiyoshi, M. Takahashi, T. Yamazaki, H. Maeda, Operation of a 500 MHz high temperature superconducting NMR: towards an NMR spectrometer operating beyond 1 GHz, J. Magn. Reson. 203 (2010) 274-282. https://doi.org/10.1016/j.jmr.2010.01.007
  11. Y. Yanagisawa, R. Piao, S. Iguchi, H. Nakagome, T. Takao, K. Kominato, M. Hamada, S. Matsumoto, H. Suematsu, X. Jin, M. Takahashi, T. Yamazaki and H. Maeda, Operation of a 400 MHz NMR magnet using a (RE:Rare Earth)Ba2Cu3O7-xhigh-temperature superconducting coil: Toward sanultra-compactsuper-highfield NMR spectrometer operated beyond1GHz,J. Magn. Reson. 249 (2014) 38-48. https://doi.org/10.1016/j.jmr.2014.10.006
  12. T. Matsuda, T. Okamura, M. Hamada, S. Matsumoto, T. Ueno, R. Piao, Y. Yanagisawa and H. Maeda, Degradation of the performance of an epoxy-impregnated REBCO solenoid due to electromagnetic forces, Cryogenics 90, 47-51 (2018) https://doi.org/10.1016/j.cryogenics.2018.01.002
  13. K. Kajita, T. Takao, H. Maeda, and Y. Yanagisawa, Degradation of a REBCO conductor due to an axial tensile stress under edgewise bending: A major stress mode of deterioration in a high field REBCO coil's performance, Superconductor Science and Technology 30, 074002 (8pp) (2017) https://doi.org/10.1088/1361-6668/aa6c38
  14. K. Kajita, S. Iguchi, Y. Xu, M. Nawa, M. Hamada, T. Takao, H. Nakagome, S. Matsumoto, G. Nishijima, H. Suematsu, M. Takahashi and Y. Yanagisawa, Degradation of a REBCO Coil Due to Cleavage and Peeling Originating from an Electromagnetic Force, IEEE Transaction on Applied Superconductivity 26, 4301106 (2016)
  15. H. Ueda, M. Fukuda, K. Hatanaka, K. Michitsuji, H. Karino, T. Wang, X. Wang, A. Ishiyama, S. Noguchi, Y. Yanagisawa and H. Maeda, Measurement and Simulation of Magnetic Field Generated by Screening Currents in HTS Coil, IEEE Trans. Appl. Supercond. 24 (2014) 4701505
  16. Y. Park, M. Lee, H. Ann, Y.H. Choi and H. Lee, A superconducting joint for GdBa2Cu3O7-${\delta}$-coated conductors, NPG Asia Mater. 6 (2014) e98 https://doi.org/10.1038/am.2014.18
  17. X. Jin, Y. Yanagisawa, H. Maeda and Y. Takano, Development of a superconducting joint between a GdBa2Cu3O7-${\delta}$-coated conductor and YBa2Cu3O7-${\delta}$ bulk: towards a superconducting joint between RE(Rare Earth) Ba2Cu3O7-${\delta}$-coated conductors, Supercond. Sci. Technol. 28 (2015) 075010 https://doi.org/10.1088/0953-2048/28/7/075010
  18. K. Ohki, T. Nagaishi, R. Piao, T. Kato, D. Yokoe, T. Hirayama, Y. Ikuhara, T. Ueno, K. Yamagishi, T. Takao, R. Piao, H. Maeda and Y. Yanagisawa, Fabrication, microstructure and persistent current measurement of an intermediate grown superconducting (iGS) joint between REBCO-coated conductors, Supercond. Sci. Technol. 30 (2017) 115017. https://doi.org/10.1088/1361-6668/aa8e65
  19. K. Yamagishi, T. Takao, Y. Suetomi, K. Ohki, T. Yamaguchi, T. Nagaishi, H. Kitaguchi, K. Saito, M. Hamada, R. Piao, Y. Yanagisawa and H. Maeda, Towards the realization of a persistent current 1.3 GHz NMR using superconducting joints -Test results of a REBCO inner coil for a persistent 400 MHz (9.39 T) LTS/REBCO NMR-, MC-18-028/ASC-18-028, IEEJ (2018) (written in Japanese)
  20. R. Matsumoto, H. Iwata, A. Yamashita, H. Hara, G. Nishijima, M. Tanaka, H. Takeya, and Y. Takano, Applied Physics Express 10 (2017) 093102. https://doi.org/10.7567/APEX.10.093102
  21. H. Heise, W. Hoyer, S. Becker, O.C. Andronesi, D. Riedel and M. Baldus, Molecular-level secondary structure, polymorphism, and dynamics of full-length ${\alpha}$-synuclein fibrils studied by solid-state NMR, PNAS 102 (2005) 15871-15876 https://doi.org/10.1073/pnas.0506109102
  22. Patrick C. A. van der Wel, Jozef R. Lewandowski, and Robert G. Griffin, Solid-State NMR Study of Amyloid Nanocrystalsand Fibrils Formed by the Peptide GNNQQNY from Yeast Prion Protein Sup 35p, J. Am. Chem. Soc. 129 (2007) 5117-5130 https://doi.org/10.1021/ja068633m