• Title/Summary/Keyword: DC Discharge

Search Result 373, Processing Time 0.033 seconds

A Study of the Discharge Characteristics of PDP having Auxiliary Electrodes with High Xe% Working Gas

  • Jang, Jin-Ho;Lee, Don-Kyu;Ok, Jung-Woo;Kim, Deok-Won;Kim, Dong-Hyun;Lee, Hae-June;Lee, Ho-Jun;Par, Chung-Hoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1189-1192
    • /
    • 2007
  • We propose new driving schemes, asymmetry and long gap mode, of PDP having auxiliary electrode between scan and common electrode. For the asymmetric modes, the auxiliary electrode located nearly center of the primary electrodes is connected to the scan of common electrode during all periods of reset, address and sustain. For the long gap mode, it is electrically disconnected or maintained at dc voltage of Vs/2 during sustain period except the first several sustain pulses. The proposed structure and driving method can provide higher luminous efficacy by minimizing consumption energy. The effectiveness of the new driving schemes has been investigated for various Xe partial pressure conditions.

  • PDF

A 150-Mb/s CMOS Monolithic Optical Receiver for Plastic Optical Fiber Link

  • Park, Kang-Yeob;Oh, Won-Seok;Ham, Kyung-Sun;Choi, Woo-Young
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • This paper describes a 150-Mb/s monolithic optical receiver for plastic optical fiber link using a standard CMOS technology. The receiver integrates a photodiode using an N-well/P-substrate junction, a pre amplifier, a post amplifier, and an output driver. The size, PN-junction type, and the number of metal fingers of the photodiode are optimized to meet the link requirements. The N-well/P-substrate photodiode has a 200-${\mu}m$ by 200-${\mu}m$ optical window, 0.1-A/W responsivity, 7.6-pF junction capacitance and 113-MHz bandwidth. The monolithic receiver can successfully convert 150-Mb/s optical signal into digital data through up to 30-m plastic optical fiber link with -10.4 dBm of optical sensitivity. The receiver occupies 0.56-$mm^2$ area including electrostatic discharge protection diodes and bonding pads. To reduce unnecessary power consumption when the light is not over threshold or not modulating, a simple light detector and a signal detector are introduced. In active mode, the receiver core consumes 5.8-mA DC currents at 150-Mb/s data rate from a single 3.3 V supply, while consumes only $120{\mu}W$ in the sleep mode.

Generation of uniform Fine Droplets Under Spindle Mode in Electrohydrodynamic Atomization (스핀들 모드하의 전기수력학적 미립화를 통한 균일 미세액적 생성)

  • Lee, Sang-Yong;Kim, Myeong-Chan;Kim, Sang-Su;Kim, Yu-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.923-932
    • /
    • 2001
  • A series of experiments were conducted to generate fine liquid(water) drops through the electrohydrodynamic atomization process. The atomization mode depended on flow rate and DC voltage input. For water, having electric conductivity larger than 10(sup)-7S/m, the spindle mode turned out to be the only mode to generate uniform-size drops within the range of 30-450 microns that have wide applications. Within this mode, both the uniformity and the fineness of drops were improved at an optimum voltage input for a given flow rate. This optimum voltage increased with increasing of the liquid flow rate. Another important parameter considered was the nozzle material with different electric conductivity and liquid wettability. A stainless-steel nozzle (the material with high electric conductivity and high liquid wettability) and a silica nozzle (the electrically non-conducting material with low liquid wettability) were tested and compared; and more uniform drops could be obtained with the silica nozzle.

State-of-Charge Balancing Control of a Battery Power Module for a Modularized Battery for Electric Vehicle

  • Choi, Seong-Chon;Jeon, Jin-Yong;Yeo, Tae-Jung;Kim, Young-Jae;Kim, Do-Yun;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.629-638
    • /
    • 2016
  • This paper proposes a State-of-Charge (SOC) balancing control of Battery Power Modules (BPMs) for a modularized battery for Electric Vehicles (EVs) without additional balancing circuits. The BPMs are substituted with the single converter in EVs located between the battery and the inverter. The BPM is composed of a two-phase interleaved boost converter with battery modules. The discharge current of each battery module can be controlled individually by using the BPM to achieve a balanced state as well as increased utilization of the battery capacity. Also, an SOC balancing method is proposed to reduce the equalization time, which satisfies the regulation of a constant DC-link voltage and a demand of the output power. The proposed system and the SOC balancing method are verified through simulation and experiment.

The RLG's Power Supply Design for Attitude Control in the Satellite (저궤도 위성 자세제어용 센서 RLG 전원 공급기 설계)

  • Kim, Eui-Chan;Lee, Heung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1488-1490
    • /
    • 2008
  • The gyroscope is the sensor for detecting the rotation in inertial reference frame and constitute the navigation system together an accelerometer. As the inertial reference equipment for attitude determination and control in the satellite, the mechanical gyroscope has been used but it bring the disturbance for mass unbalance so the disturbance give a bad influence to the observation satellite mission because the mechanical gyroscope has the rotation parts. During the launch, The mechanical gyroscope is weak in vibration, shock and has the defect of narrow operating temperature range so it need the special design in integration. Recently the low orbit observation satellite for seeking the high pointing accuracy of image camera payload accept the FOG(Fiber Optic Gyro) or RLG(Ring Laser Gyro) for the attitude determination and control. The Ring Laser Gyro makes use of the Sanac effect within a resonant ring cavity of a He-Ne laser and has more accuracy than the other gyros. It need the 1000V DC to create the He-Ne plasma in discharge tube. In this paper, the design process of the High Voltage Power Supply for RLG(Ring Laser Gyroscope) is described. The specification for High Voltage Power Supply(HVPS) is proposed. Also, The analysis of flyback converter topology is explained. The Design for the HVPS is composed of the inverter circuit, feedback control circuit, high frequency switching transformer design and voltage doubler circuit.

  • PDF

Characteristics of Oxide Layers Formed on Al2021 Alloys by Plasma Electrolytic Oxidation in Aluminate Fluorosilicate Electrolyte

  • Wang, Kai;Koo, Bon-Heun;Lee, Chan-Gyu;Kim, Young-Joo;Lee, Sung-Hun;Byon, Eung-Sun
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.6
    • /
    • pp.308-311
    • /
    • 2008
  • Oxide layers were prepared on Al2021 alloys substrate under a hybrid voltage of AC 200 V (60 Hz) combined with DC 260 V value at room temperature within $5{\sim}60\;min$ by plasma electrolytic oxidation (PEO). An optimized aluminate-fluorosilicate solution was used as the electrolytes. The surface morphology, thickness and composition of layers on Al2021 alloys at different reaction times were studied. The results showed that it is possible to generate oxide layers of good properties on Al2021 alloys in aluminate-fluorosilicate electrolytes. Analysis show that the double-layer structure oxide layers consist of different states such as ${\alpha}-{Al_2}{O_3}$ and ${\gamma}-{Al_2}{O_3}$. For short treatment times, the formation process of oxide layers follows a linear kinetics, while for longer times the formation process slows down and becomes a steady stage. During the PEO processes, the average size of the discharge channels increased gradually as the PEO treatment time increased.

Residual magnetic field profiles and their current density profiles of coated conductors for fast and slow cut-off current operations

  • Sun, J.;Tallouli, M.;Shyshkin, O.;Hamabe, M.;Watanabe, H.;Chikumoto, N.;Yamaguchi, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.1
    • /
    • pp.17-20
    • /
    • 2015
  • Coated conductor is an important candidate for power cable applications due to its high current density. Even for DC power cable transmission, we must study the transport properties of HTS tapes after slow and fast discharge. In order to evaluate relation of the magnetic field with applied current we developed a scanning magnetic field measurements system by employing a Hall probe. This work presents the measurements of the magnetic fields above a coated conductor by varying applied current pattern. In the work, a transport current of 100 A, less than the critical current, is applied to YBCO coated conductor. We measured the residual magnetic field distributions after cut off the transport current with slow and fast operations. The results show differences of the magnetic field profiles and the corresponding current profiles by an inverse solution from the magnetic field measurement between these two operations because of the hysteresis of coated conductor excited by the transport current.

Design of 5 W Current-Mode Class D RF Power Amplifier for GSM Band (GSM대역 5 W급 전류 모드 D급 전력증폭기의 설계)

  • 서용주;조경준;김종헌
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.6
    • /
    • pp.540-547
    • /
    • 2004
  • In this paper, a current - mode class D(CMCD) power amplifier over 70 % power added efficiency at 900 ㎒ is designed and implemented. Based on push-pull class B structure, main power loss due to charge and discharge of output capacitance in switching mode power amplifier is minimized by applying a parallel harmonic control circuit. Experimental CMCD amplifier with 73 % power added efficiency at 3.2 W and 72 % power added efficiency at 5 W are achieved respectively. In addition a characteristic of switching mode power amplifier whose output power is proportional to magnitude of U power is verified.

Cell-balancing Algorithm for Paralleled Battery Cells using State-of-Charge Comparison Rule

  • La, Phuong-Ha;Choi, Sung-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.156-158
    • /
    • 2018
  • The inconsistencies between paralleled battery cells are becoming more considerable issue in high capacity battery applications like electric vehicles. Due to differences in state-of-charge (SOC) and internal resistance within individual cells in parallel, charging or discharging current is not appropriately balanced to each cell in terms of SOC, which may shorten the lifetime or sometimes cause safety issues. In this paper, an intelligent cell-balancing algorithm is proposed to overcome the inconsistency issue especially for paralleled battery cells. In this scheme, SOC information collected in the sub-BMS module is sent to the main-BMS module, where the number of parallel cells to be connected to DC bus is continuously updated based on the suggested SOC comparison rule. To verify the method, operation of the algorithm on 4 paralleled battery cells are simulated on Matlab/Simulink. The simulation result shows that the SOCs of paralleled cells are evenly redistributed. It is expected that the proposed algorithm provides high reliable and prolong the life cycle and working capacity of the battery pack.

  • PDF

Heat kTransfer Modeling and Characteristics Analysis of Impulsed Magnetizing Fisture (임펄스 착자요크의 열전달 모델링 및 특성 해석)

  • 백수현;김필수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.3
    • /
    • pp.381-387
    • /
    • 1994
  • In this paper, we found the improved SPICE heat transfer modeling of impulsed magnetizing fixture system and investigated temperature characteristics using the proposed model. As the detailed thermal characteristics of magnetizing fixture can be obtained, the efficient design of the impulsed magnetizing fixture which produce desired magnet will be possible using our heat transfer modeling. The knowledge of the temperature of the magnetizing fixture is very important of forecast the characteristics of the magnetizing fixture which produce desired magnet will be possible using our heat transfer modeling. The knowledge of the temperature of the magnetizing fixture is very important to forecast the characteristics of the magnetizing circuits under different conditions. The capacitor voltage was not raised above 810[V] to protect the magnetizing fixture from excessive heating. The purpose of this work is to compute the temperature increasing for different magnetizing conditions. The method uses multi-lumped model with equivalent thermal resistance and thermal capacitance. The reliable results are obtained by using iron core fixture (stator magnet of air cleaner DC motor) coupled to a low-voltage magnetizer(charging voltage : 1000[V], capacitor : 3825[$\mu$F]. The modeling and experimental results are in close aggrement.

  • PDF