• Title/Summary/Keyword: DC Capacitors

Search Result 306, Processing Time 0.028 seconds

An Improved SVPWM Control of Voltage Imbalance in Capacitors of a Single-Phase Multilevel Inverter

  • Ramirez, Fernando Arturo;Arjona, Marco A.
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1235-1243
    • /
    • 2015
  • This paper presents a modified Space Vector Pulse Width Modulation Technique (SVPWM), which solves the well-known problem of voltage imbalance in the capacitors of a single-phase multilevel inverter. The proposed solution is based on the measurement of DC voltage levels at each capacitor of the inverter DC bus. The measurements are then used to adjust the size of the active vectors within the SVPWM algorithm to keep the voltage waveform sinusoidal regardless of any voltage imbalance on the DC link capacitors. When a voltage deviation exceeds a predetermined hysteresis band, the correspondent voltage vector is restricted to restore the voltage level to an acceptable threshold. Hence, the need for external voltage regulators for the voltage capacitors is eliminated. The functionality of the proposed algorithm is successfully demonstrated through simulations and experiments on a grid tied application.

A Simple ESR Measurement Method for DC Bus Capacitor Using DC/DC Converter (DC/DC 컨버터를 이용한 DC Bus 커패시터의 간단한 ESR 측정 기법)

  • Shon, Jin-Geun;Kim, Jin-Sik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.372-376
    • /
    • 2010
  • Electrolytic capacitors have been widely used in power electronics system because of the features of large capacitance, small size, high-voltage, and low-cost. Electrolytic capacitors, which is most of the time affected by aging effect, plays a very important role for the power electronics system quality and reliability. Therefore it is important to estimate the parameter of an electrolytic capacitor to predict the failure. The estimation of the equivalent series resistance(ESR) is important parameter in life condition monitoring of electrolytic capacitor. This paper proposes a simple technique to measure the ESR of an electrolytic capacitor. This method uses a switching DC/DC boost converter to measure the DC Bus capacitor ESR of power converter. Main advantage of the proposed method is very simple in technique, consumes very little time and requires only simple instruments. Simulation results are shown to verify the performance of the proposed method.

A Novel Active Boost Power Converter for single phase SRM (단상 SRM 구동을 위한 새로운 능동 부스트 전력 컨버터)

  • Seok, Seung-Hun;Liang, Jianing;Lee, Dong-Heeㅋ;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.277-279
    • /
    • 2008
  • In this paper, a novel active boost converter for SR drive is proposed. An active capacitor circuit is added in the front-end. Based on this active capacitor network, when boost switch turns off, this network seems as passive capacitor network. And the voltage of boost capacitor can keep balance with dc-link voltage automatically. In the capacitor network, discharging voltage is general dc-link voltage in parallel-connected capacitors; charging voltage is double dc-link voltage in series-connected capacitors. When boost switch turns on, two capacitors are connected in series, and discharging voltage is up to double dc-link voltage. So the fast excitation current can be obtained from this mode. Profit from fast excitation and fast demagnetization mode, the performance and output power can be improved. Some computer simulations are done to verify the performance of proposed converter.

  • PDF

Reference Model Updating of Considering Disturbance Characteristics for Fault Diagnosis of Large-scale DC Bus Capacitors (대용량 직류버스 커패시터의 고장진단을 위한 외란특성 반영의 레퍼런스 모델 개선)

  • Lee, Tae-Bong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.213-218
    • /
    • 2017
  • The DC electrolytic capacitor for DC-link of power converter is widely used in various power electronic circuits and system application. Its functions include, DC Bus voltage stabilization, conduction of ripple current due to switching events, voltage smoothing, etc. Unfortunately, DC electrolytic capacitors are some of the weakest components in power electronics converters. Many papers have proposed different algorithms or diagnosis method to determinate the ESR and tan ${\delta}$ capacitance C for fault alarm system of the electrolytic capacitor. However, both ESR vary with frequency and temperature. Accurate knowledge of both parameters at the capacitors operating conditions is essential to achieve the best reference data of fault alarm. According to parameter analysis, the capacitance increases with temperature and the initial ESR decreases. Higher frequencies make the reference ESR with the initial ESRo value to decrease. Analysis results show that the proposed DC Bus electrolytic capacitor reference ESR model setting technique can be applied to advanced reference signal of capacitor diagnosis systems successfully.

Characteristic Investigation of External Parameters for Fault Diagnosis Reference Model Input of DC Electrolytic Capacitor (DC 전해 커패시터의 고장진단 기준모델 입력을 위한 외부변수의 특성 고찰)

  • Park, Jong-Chan;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.4
    • /
    • pp.186-191
    • /
    • 2012
  • DC Bus Electrolytic capacitors have been widely used in power conversion system because they can achieve high capacitance and voltage ratings with volumetric efficiency and low cost. This type of capacitors have been traditionally used for filtering, voltage smoothing, by-pass and other many applications in power conversion circuits requiring a cost effective and volumetric efficiency components. Unfortunately, electrolytic capacitors are some of the weakest components in power electronic converter. Many papers have proposed different methods or algorithms to determinate the ESR and/or capacitance C for fault diagnosis of the electrolytic capacitor. However, both ESR and C vary with frequency and temperature. Accurate knowledge of both values at the capacitors operating conditions is essential to achieve the best reference data of fault judgement. According to parameter analysis, the capacitance increases with temperature and the ESR decreases. Higher frequencies make the ESR and C to decrease. Analysis results show that the proposed electrolytic capacitor parameter estimation technique can be applied to reference signal of capacitor diagnosis systems successfully.

Study on Transformer Saturation in Isolated Full-Bridge DC-DC Converters (절연형 풀브리지 DC-DC 컨버터에서의 변압기 포화에 관한 연구)

  • Kim, Jeonghun;Cha, Honnyong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.261-268
    • /
    • 2020
  • Transformer saturation in full bridge (FB) isolated DC-DC converters is caused by uneven switching speeds and voltage drops in semiconductor devices and mismatched gate signals. In order to prevent transformer saturation, most popular and widely used approach is to insert a capacitor in series with the transformer windings. This study conducts extensive analyses on transformer saturation and the effect of DC blocking capacitors when they are placed in the primary or secondary windings of a transformer. The effect of the DC blocking capacitors is verified in voltage-fed and current-fed FB converters.

Power Decoupling of Single-phase DC/AC inverter using Dual Half Bridge Converter (듀얼 하프브리지 컨버터를 사용하는 파워 디커플링 DC/AC 인버터)

  • Irfan, Mohammad Sameer;Ahmed, Ashraf;Park, Joung-hu
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.421-422
    • /
    • 2015
  • Nowadays, bidirectional DC-DC converters are becoming more into picture for different applications especially electric vehicles. There are many bidirectional DC-DC converters topologies; however, voltage-fed Dual Half-Bridge (DHB) topology has less number of switches as compared to other isolated bidirectional DC-DC converters. Furthermore, voltage fed DHB has galvanic isolation, high power density, reduced size, high efficiency and hence cost effective. Electrolytic capacitors always have problem regarding size and reliability in DC-AC single phase inverters. Therefore, voltage-fed DHB converter is proposed for the purpose of power decoupling to replace electrolytic capacitor by film capacitors. A new control strategy has been developed for 120Hz ripple rejection, and it was verified by simulation.

  • PDF

A Development of Ethernet-Based Remote Diagnosis System for DC Voltage Smoothing Capacitor using DSP (DSP를 적용한 전력용 DC 평활 커패시터의 이더넷 원격 고장진단시스템 개발)

  • Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.2
    • /
    • pp.94-98
    • /
    • 2011
  • Electrolytic power capacitors today form essential components for virtually any power electronic system such as DC/DC converter or UPS. Frequently, electrolytic capacitors for DC link voltage smoothing are the key components which determine the life cycle of the whole unit and often are responsible for converter breakdown failures. In this paper, ethernet-based remote diagnosis system for DC voltage smoothing capacitor using DSP control board is developed. To estimate the status of the capacitor, the equivalent series resistor(ESR) of the component has to be determined. The ESR detection scheme is based on the determination of the capacitor ripple power losses calculated from DC link voltage/current measurement. Experimental results show the veridity and reliability of the proposed ethernet-based remote on-line capacitor diagnosis system.

An Improvement On-Line Failure Diagnosis of DC Link Capacitor in PWM Power Converters (PWM 전력 컨버터에서 DC 링크 커패시터의 개선된 온라인 고장 진단)

  • Shon, Jin-Geun;Na, Chae-Dong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.40-46
    • /
    • 2010
  • DC link electrolytic capacitors are widely used in various PWM power converter system, such as adjustable speed driver(ASD) or DC/DC converter. Electrolytic capacitors, which is the most of the time affected by aging effect, plays a very important role for the power electronics system quality and reliability. This objective of this paper is to propose a improvement method to detect the rise of equivalent series resistor(ESR) in order to realize the online failure prediction of electrolytic capacitor for DC link of PWM power converter. The ESR detection scheme is based on the determination of the electrolytic capacitor AC losses calculated from voltage/current measurement using AC coupling. Therefore, the preposed online failure prediction method has the merits of easy ESR computation and circuit simplicity compare with BPF method. Simulation results show the veridity of the proposed on-line ESR estimation method.

A Simple-Structured DC Solid-State Circuit Breaker with Easy Charging Capability (충전 동작이 용이한 간단한 구조의 DC 반도체 차단기)

  • Kim, Jin-Young;Kim, In-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1575-1583
    • /
    • 2017
  • With the development of DC distribution, DC circuit breaker is required to ensure the stability of the DC grid. Unlike a mechanical circuit breaker that blocks after several tens of milliseconds, a DC SSCB(Solid-State Circuit Breaker) can break the fault well within 1 [ms], so it can prevent the damage of accident. However, the previous DC SSCB requires a lot of switching elements for charging commutation capacitors, and the control is complicated. Therefore, this paper proposes a new DC SSCB suitable for DC grid. The proposed DC SSCB is simple to control for charging commutation capacitors, and it can perform the rapid breaking and operating duty of reclosing and rebreaking. The proposed DC SSCB was designed to 380 [V] and 5 [kW] class which is suitable for residential DC distribution, and the operating characteristics of the proposed DC SSCB were verified by simulations and experiments. It is anticipated that the proposed DC SSCB may be utilized to design and realize DC grid system.