• Title/Summary/Keyword: D-xylulose

Search Result 14, Processing Time 0.021 seconds

Cloning and Characterization of D-xylulose Kinase from Kocuria gwangalliensis Strain SJ2 (Kocuria gwangalliensis strain SJ2에서 유래된 D-xylulose kinase 유전자의 클로닝과 특성 연구)

  • Jeong, Tae Hyug;Hwang, Tae Kyung;Seo, Yong Bae;Kim, Young Tae
    • Journal of Life Science
    • /
    • v.25 no.5
    • /
    • pp.507-514
    • /
    • 2015
  • D-Xylulose is phosphorylated to D-xylulose-5-phosphate by D-xylulose kinase before it enters glycolysis via the nonoxidative pentose phosphate pathway. A gene encoding a novel D-xylulose kinase (XK) from K. gwangalliensis strain SJ2 was sequenced and expressed in E. coli. The sequence of the isolated XK gene was 1,419 bp, encoding 472 amino acids. The XK protein was more closely related to the Arthrobacter phenanthrenivorans XK than to the Bifidobacterium catenulatum one, as reflected in the sequence identity (54.9% vs. 38.7%). The XK gene was subcloned into the pCold-II expression vector. The resulting plasmid was transformed into E. coli strain BL21 (DE3) cells and the expression of the recombinant XK protein was induced by the addition of IPTG. The resulting protein was expressed as a fusion protein of approximately 48 kDa containing a N-terminal six-histidine extension that was derived from the expression vector. The expressed protein was homogenized by affinity chromatography and showed enzymatic activity corresponding to D-xylulose kinase. XK enzyme kinetic studies with D-xylulose and ATP showed a Km of 250±20 μM and 1,300±50 μM, respectively. The results obtained from this study will provide a wider knowledge base for the characterization of D-xylulose kinase at the molecular level.

Electrostatic Immobilization of D-Xylose Isomerase to a Cation Exchanger for the Conversion of D-Xylose to D-Xylulose (D-xylose에서 D-xylulose로의 전환을 위한 D-xylose Isomerase의 정전기적 고정화)

  • Hang, Nguyen Thi;Kim, Sung-Gun;Kweon, Dae-Hyuk
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.2
    • /
    • pp.163-167
    • /
    • 2012
  • Since D-xylose is not fermentable in Saccharomyces cerevisiae, its conversion to D-xylulose is required for its application in biotechnological industries using S. cerevisiae. In order to convert D-xylose to D-xylulose by way of an enzyme immobilized system, D-xylose isomerase (XI) of Escherichia coli was fused with 10-arginine tag (R10) at its C-terminus for the simple purification and immobilization process using a cation exchanger. The fusion protein XIR10 was overexpressed in recombinant E. coli and purified to a high purity by a single step of cation exchange chromatography. The purified XIR10 was immobilized to a cation exchanger via the electrostatic interaction with the C-terminal 10-arginine tag. Both the free and immobilized XIR10 exhibited similar XI activities at various pH values and temperatures, indicating that the immobilization to the cation exchanger has a small effect on the enzymatic function of XIR10. Under optimized conditions for the immobilized XIR10, D-xylose was isomerized to D-xylulose with a conversion yield of 25%. Therefore, the results of this study clearly demonstrate that the electrostatic immobilization of XIR10 via the interaction between the 10-arginine tag and a cation exchanger is an applicable form of the conversion of D-xylose to D-xylulose.

Comparative Modeling Studies of 1-deoxy-D-xylulose 5-phosphate Synthase (MEP pathway) from Mycobacterium Tuberculosis

  • Kothandan, Gugan
    • Journal of Integrative Natural Science
    • /
    • v.4 no.3
    • /
    • pp.202-209
    • /
    • 2011
  • Tuberculosis is a major health problem in humans because of its multidrug resistance and discovering new treatments for this disease is urgently required. The synthesis of isoprenoids in Mycobacterium tuberculosis has been reported as an interesting pathway to target. In this context, 2C-methyl-D-erythritol 4-phosphate (MEP) pathway of M. tuberculosis has drawn attention. The MEP pathway begins with the condensation of glyceraldehyde 3-phosphate and pyruvate forming 1-deoxy-D-xylulose 5-phosphate (DXP) which is catalyzed by 1-deoxy-D-xylulose 5-phosphate synthase (DXS). As there is no X-ray structure was reported for this target, comparative modeling was used to generate the three dimensional structure. The structure was further validated by PROCHECK, VERIFY-3D, PROSA, ERRAT and WHATIF. Molecular docking studies was performed with the substrate (Thiamine pyrophosphate) and the reported inhibitor 2-methyl-3-(4-fluorophenyl)-5-(4-methoxy-phenyl)-4H-pyrazolol[1,5-a]pyrimidin-7-one) against the developed model to identify the crucial residues in the active site. This study may further be useful to provide structure based drug design.

Optimization of Culture Conditions for D-Ribose Production by Transketolase-Deficient Bacillus subtilis JY1

  • Park, Yong-Cheol;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.665-672
    • /
    • 2004
  • D-Ribose is a five-carbon sugar used for the commercial synthesis of riboflavin, antiviral agents, and flavor enhancers. Batch fermentations with transketolase-deficient B. subtilis JY1 were carried out to optimize the production of D-ribose from xylose. The best results for the fermentation were obtained with a temperature of $37^{\circ}C$ and an initial pH of 7.0. Among various sugars and sugar alcohols tested, glucose and sucrose were found to be the most effective for both cell growth and D-ribose production. The addition of 15 g/l xylose and 15 g/l glucose improved the fermentation performance, presumably due to the adequate supply of ATP in the xylose metabolism from D-xylulose to D-xylulose-5-phosphate. A batch culture in a 3.7-1 jar fermentor with 14.9 g/l xylose and 13.1 g/l glucose resulted in 10.1 g/l D-ribose concentration with a yield of 0.62 g D-ribose/g sugar consumed, and 0.25 g/l-h of productivity. Furthermore, the sugar utilization profile, indicating the simultaneous consumption of xylose and glucose, and respiratory parameters for the glucose and sucrose media suggested that the transketolase-deficient B. subtilis JY1 lost the glucose-specific enzyme II of the phosphoenolpyruvate transferase system.

Functional Identification of Ginkgo biloba 1-Deoxy-D-xylulose 5-Phosphate Synthase (DXS) Gene by Using Escherichia coli Disruptants Defective in DXS Gene

  • Kim, Sang-Min;Kuzuyama, Tomohisa;Chang, Yung-Jin;Kim, Soo-Un
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.2
    • /
    • pp.101-104
    • /
    • 2005
  • DXS catalyzes the first step of MEP pathway. Escherichia coli disruptants defective in dxs were constructed by insertional mutation and characterized. Selected disruptant, DXM3, was auxotrophic for DX or ME. Putative class 1 DXS ORF from Ginkgo biloba was shown to rescue DXM3 grown without DX or ME supplementation. The putative ORF was thus confirmed as DXS1. The disruptant was demonstrated to be useful for DSX screening.

Increase of $CoQ_{10}$ Production Level by the Coexpression of Decaprenyl Diphosphate Synthase and 1-Deoxy-D-xylulose 5-Phosphate Synthase Isolated from Rhizobium radiobacter ATCC 4718 in Recombinant Escherichia coli

  • Seo, Myung-Ji;Im, Eun-Mi;Nam, Jung-Yeon;Kim, Soon-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1045-1048
    • /
    • 2007
  • Two genes, dps encoding decaprenyl diphosphate synthase and dxs encoding 1-deoxy-D-xylulose 5-phosphate synthase, were isolated from Rhizobium radiobacter ATCC 4718. DNA sequencing analysis of the dps and dxs genes revealed an open reading frame of 1,077 bp and 1,920 bp, respectively. The heterologous expression in Escherichia coli BL21(DE3) was carried out in order to identify their functions. Recombinant E. coli BL21(DE3) harboring the dps gene produced $CoQ_{10}$ as well as $CoQ_8$ and $CoQ_9$, whereas E. coli harboring only the dxs gene produced more $CoQ_8$ compared with the wild-type E. coli. Additionally, the coexpression of dps and dxs genes in E. coli was carried out. The recombinant E. coli harboring only the dps gene produced $0.21{\pm}0.04\;mg/l$ of $CoQ_{10}$, whereas the coexpressed E. coli with dps and dxs genes produced $0.37{\pm}0.07\;mg/l$ of $CoQ_{10}$. HPLC analysis also showed that the $CoQ_{10}$ fraction (100% of the total CoQs distribution) was increased from $15.86{\pm}0.66%$ (only dps) to $29.78{\pm}1.80%$ (dps and dxs).

Purification and Characterization of the D-xylulokinase from Candida sp. L-16 (Candida sp. L-16이 생산하는 D-Xylulokinase의 정제 및 특성)

  • 이종수;주길재
    • Food Science and Preservation
    • /
    • v.9 no.4
    • /
    • pp.429-433
    • /
    • 2002
  • The D-xylulokinase from Candida sp. L-16 was purified through a sequence of ammonium sulfate fractionation, DEAE-cellulose chromatography, Sephadex G-100 and Sephadex G-200 gel filtration. The specific activity of the purified Dxylulokinase was increased to 23.2 fold and the yield was 11.2%. The enzyme was showed to be a single protein band by SDS-PAGE. The molecular weight of the enzyme was 150,000 dalton, this enzyme was identified to be a dimer with two subunits. The optimum conditions of the enzyme were pH 8.0 and 40$\^{C}$, respectively. The enzyme was relatively stable between pH 7.0 to pH 9.0, but it was unstable over 30$\^{C}$. The enzyme showed substrate specificity on D-xylulose, D-arabinose and D-ribose, Km value and Vmax for D-xylulose were 0.042 mM and 117 units/ml, respectively. The activation energy of the enzyme was 4.75 Kcal/mol. The one was inhibited by metabolic intermediates such as 6-phosphogluconic acid, 2-keto-gluconic acid. The enzyme was activated by EDTA and thiol compounds such as cysteine-HCI, DTT and glutathione.

Molecular cloning and expression analysis of the first two key genes through 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway from Pyropia haitanensis (Bangiales, Rhodophyta)

  • Du, Yu;Guan, Jian;Xu, Ruijun;Liu, Xin;Shen, Weijie;Ma, Yafeng;He, Yuan;Shen, Songdong
    • ALGAE
    • /
    • v.32 no.4
    • /
    • pp.359-377
    • /
    • 2017
  • Pyropia haitanensis (T. J. Chang et B. F. Zheng) N. Kikuchi et M. Miyata is one of the most commercially useful macroalgae cultivated in southeastern China. In red algae, the biosynthesis of terpenoids through 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway can produce a direct influence on the synthesis of many biologically important metabolites. In this study, two genes of cDNAs, 1-deoxy-D-xylulose-5-phosphate synthase (DXS) and 1-deoxy-D-xylulose-5-phosphate reductase (DXR), which encoding the first two rate-limiting enzymes among MEP pathway were cloned from P. haitanensis. The cDNAs of P. haitanensis DXS (PhDXS) and DXR (PhDXR) both contained complete open reading frames encoding polypeptides of 764 and 426 amino acids residues, separately. The expression analysis showed that PhDXS was significant differently expressed between leafy thallus and conchocelis as PhDXR been non-significant. Additionally, expression of PhDXR and its downstream gene geranylgeranyl diphosphate synthase were both inhibited by fosmidomycin significantly. Meanwhile, we constructed types of phylogenetic trees through different algae and higher plants DXS and DXR encoding amino acid sequences, as a result we found tree clustering consequences basically in line with the "Cavalier-Smith endosymbiotic theory." Whereupon, we speculated that in red algae, there existed only complete MEP pathway to meet needs of terpenoids synthesis for themselves; Terpenoids synthesis of red algae derivatives through mevalonate pathway came from two or more times endosymbiosis of heterotrophic eukaryotic parasitifer. This study demonstrated that PhDXS and PhDXR could play significant roles in terpenoids biosynthesis at molecular levels. Meanwhile, as nuclear genes among MEP pathway, PhDXS and PhDXR could provide a new way of thinking to research the problem of chromalveolata biological evolution.

Metabolic engineering for isoprenoids production in Escherichia coli

  • Kim, Seon-Won;Keasling, J.D.
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.70-73
    • /
    • 2001
  • Isopentenyl diphosphate (IPP) is the common, five-carbon building block in the biosynthesis of all isoprenoids. IPP in Escherichia coli is synthesized through the non-mevalonate pathway. The first reaction of IPP biosynthesis in E. coli is the formation of 1-deoxy-D-xylulose-5-phosphate(DXP), catalyzed by DXP synthase and encoded by dxs. The second reaction in the pathway is the reduction of DXP to 2-C-methyl-D-erythritol-4-phosphate, catalyzed by DXP reductoismerase and encoded by dxr. To determine if one of more of the reactions in the non-mevalonate pathway controlled flux to IPP, dxs and dxr were placed on several expression vectors under the control of three different promoters and transformed into three E. coli strains ($DH5{\alpha}$, XL1-Blue, and JM101) that had been engineered to produce lycopene, a kind of isoprenoids. Lycopene production was improved significantly in strains transformed with the dex expression vectors. At arabinose concentrations between 0 and 1.33 mM, cells expressiong both dxs and from $P_{BAD}$ on a midium-copy plasmid produced 1.4 -2.0 times more lycopene than cells expressing dxs only. However, at higher arabinose concentrations lycopene production in cell expressing both dxs and dxr was lower than in cells expression dxs only. A comparison of the three E. coli strains trasfomed with the arabinose-inducible dxs on a medium-copy plasmid revealed that lycopene production was highest in XL1-Blue.

  • PDF