Browse > Article
http://dx.doi.org/10.4490/algae.2017.32.10.2

Molecular cloning and expression analysis of the first two key genes through 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway from Pyropia haitanensis (Bangiales, Rhodophyta)  

Du, Yu (Department of Cell Biology, School of Biology and Basic Medical, Soochow University)
Guan, Jian (Department of Cell Biology, School of Biology and Basic Medical, Soochow University)
Xu, Ruijun (School for Radiological & Interdisciplinary Sciences, Soochow University)
Liu, Xin (Department of Cell Biology, School of Biology and Basic Medical, Soochow University)
Shen, Weijie (Department of Cell Biology, School of Biology and Basic Medical, Soochow University)
Ma, Yafeng (Department of Cell Biology, School of Biology and Basic Medical, Soochow University)
He, Yuan (Department of Cell Biology, School of Biology and Basic Medical, Soochow University)
Shen, Songdong (Department of Cell Biology, School of Biology and Basic Medical, Soochow University)
Publication Information
ALGAE / v.32, no.4, 2017 , pp. 359-377 More about this Journal
Abstract
Pyropia haitanensis (T. J. Chang et B. F. Zheng) N. Kikuchi et M. Miyata is one of the most commercially useful macroalgae cultivated in southeastern China. In red algae, the biosynthesis of terpenoids through 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway can produce a direct influence on the synthesis of many biologically important metabolites. In this study, two genes of cDNAs, 1-deoxy-D-xylulose-5-phosphate synthase (DXS) and 1-deoxy-D-xylulose-5-phosphate reductase (DXR), which encoding the first two rate-limiting enzymes among MEP pathway were cloned from P. haitanensis. The cDNAs of P. haitanensis DXS (PhDXS) and DXR (PhDXR) both contained complete open reading frames encoding polypeptides of 764 and 426 amino acids residues, separately. The expression analysis showed that PhDXS was significant differently expressed between leafy thallus and conchocelis as PhDXR been non-significant. Additionally, expression of PhDXR and its downstream gene geranylgeranyl diphosphate synthase were both inhibited by fosmidomycin significantly. Meanwhile, we constructed types of phylogenetic trees through different algae and higher plants DXS and DXR encoding amino acid sequences, as a result we found tree clustering consequences basically in line with the "Cavalier-Smith endosymbiotic theory." Whereupon, we speculated that in red algae, there existed only complete MEP pathway to meet needs of terpenoids synthesis for themselves; Terpenoids synthesis of red algae derivatives through mevalonate pathway came from two or more times endosymbiosis of heterotrophic eukaryotic parasitifer. This study demonstrated that PhDXS and PhDXR could play significant roles in terpenoids biosynthesis at molecular levels. Meanwhile, as nuclear genes among MEP pathway, PhDXS and PhDXR could provide a new way of thinking to research the problem of chromalveolata biological evolution.
Keywords
gene expression analysis; MEP pathway; molecular cloning; Pyropia haitanensis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Peng, G., Wang, C., Song, S., Fu, X., Azam, M., Grierson, D. & Xu, C. 2013. The role of 1-deoxy-d-xylulose-5-phosphate synthase and phytoene synthase gene family in citrus carotenoid accumulation. Plant Physiol. Biochem. 71:67-76.   DOI
2 Reyes-Prieto, A., Hackett, J. D., Soares, M. B., Bonaldo, M. F. & Bhattacharya, D. 2006. Cyanobacterial contribution to algal nuclear genomes is primarily limited to plastid functions. Curr. Biol. 16:2320-2325.   DOI
3 Rodriguez-Concepcion, M., Ahumada, I., Diez-Juez, E., Sauret-Güeto, S., Lois, L. M., Gallego, F., Carretero-Paulet, L., Campos, N. & Boronat, A. 2001. 1-Deoxy-Dxylulose 5-phosphate reductoisomerase and plastid isoprenoid biosynthesis during tomato fruit ripening. Plant J. 27:213-222.   DOI
4 Scolnik, P. A. & Bartley, G. E. 1994. Nucleotide sequence of an Arabidopsis cDNA for geranylgeranyl pyrophosphate synthase. Plant Physiol. 104:1469-1470.   DOI
5 Slamovits, C. H. & Keeling, P. J. 2008. Plastid-derived genes in the nonphotosynthetic alveolate Oxyrrhis marina. Mol. Biol. Evol. 25:1297-1306.   DOI
6 Sutherland, J. E., Lindstrom, S. C., Nelson, W. A., Brodie, J., Lynch, M. D. J., Hwang, M. S., Choi, H. -G., Miyata, M., Kikuchi, N., Oliveira, M. C., Farr, T., Neefus, C., Mols-Mortensen, A., Milstein, D. & Müller, K. M. 2011. A new look at an ancient order: generic revision of the Bangiales (Rhodophyta). J. Phycol. 47:1131-1151.   DOI
7 Tong, Y., Su, P., Zhao, Y., Zhang, M., Wang, X., Liu, Y., Zhang, X., Gao, W. & Huang, L. 2015. Molecular cloning and characterization of DXS and DXR genes in the terpenoid biosynthetic pathway of Tripterygium wilfordii. Int. J. Mol. Sci. 16:25516-25535.   DOI
8 Vranova, E., Coman, D. & Gruissem, W. 2013. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu. Rev. Plant. Biol. 64:665-700.   DOI
9 Pattanaik, B. & Lindberg, P. 2015. Terpenoids and their biosynthesis in cyanobacteria. Life (Basel) 5:269-293.
10 Wang, L., Mao, Y., Kong, F., Cao, M. & Sun, P. 2015. Genomewide expression profiles of Pyropia haitanensis in response to osmotic stress by using deep sequencing technology. BMC Genomics 16:1012.   DOI
11 Cavalier-Smith, T. 1999. Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J. Eukaryot. Microbiol. 46:347-366.   DOI
12 Bowler, C., Allen, A. E., Badger, J. H., Grimwood, J., Jabbari, K., Kuo, A., Maheswari, U., Martens, C., Maumus, F. & Otillar, R. P. 2008. The phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239-244.   DOI
13 Carretero-Paulet, L., Cairo, A., Botella-Pavia, P., Besumbes, O., Campos, N., Boronat, A. & Rodriguez-Concepcion, M. 2006. Enhanced flux through the methylerythritol 4-phosphate pathway in Arabidopsis plants overexpressing deoxyxylulose 5-phosphate reductoisomerase. Plant Mol. Biol. 62:683-695.   DOI
14 Carretero-Paulet, L., Cairo, A., Talavera, D., Saura, A., Imperial, S., Rodriguez-Concepcion, M., Campos, N. & Boronat, A. 2013. Functional and evolutionary analysis of DXL1, a non-essential gene encoding a 1-deoxy-D-xylulose 5-phosphate synthase like protein in Arabidopsis thaliana. Gene 524:40-53.   DOI
15 Chan, C. X., Blouin, N. A., Zhuang, Y., Zäuner, S., Prochnik, S. E., Lindquist, E., Lin, S., Benning, C., Lohr, M., Yarish, C., Gantt, E., Grossman, A. R., Lu, S., Müller, K., Stiller, J. W., Brawley, S. H. & Bhattacharya, D. 2012. Porphyra (Bangiophyceae) transcriptomes provide insights into red algal development and metabolism. J. Phycol. 48:1328-1342.   DOI
16 Chen, C., Dai, Z., Xu, Y., Ji, D. & Xie, C. 2016. Cloning, expression, and characterization of carbonic anhydrase genes from Pyropia haitanensis (Bangiales, Rhodophyta). J. Appl. Phycol. 28:1403-1417.   DOI
17 Xu, D., Qiao, H., Zhu, J., Xu, P., Liang, C., Zhang, X., Ye, N. & Yang, W. 2012. Assessment of photosynthetic performance of Porphyra yezoensis (Bangiales, Rhodophyta) in conchocelis phase. J. Phycol. 48:467-470.   DOI
18 Wellburn, A. R. 1994. The spectral determination of chlorophylls a, and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant. Physiol. 144:307-313.   DOI
19 Xiang, S., Usunow, G., Lange, G., Busch, M. & Tong, L. 2007. Crystal structure of 1-deoxy-d-xylulose 5-phosphate synthase, a crucial enzyme for isoprenoids biosynthesis. J. Biol. Chem. 282:2676-2682.   DOI
20 Xie, C., Li, B., Xu, Y., Ji, D. & Chen, C. 2013. Characterization of the global transcriptome for Pyropia haitanensis (Bangiales, Rhodophyta) and development of cSSR markers. BMC Genomics 14:107.   DOI
21 Xu, Y., Liu, J., Liang, L., Yang, X., Zhang, Z., Gao, Z., Sui, C. & Wei, J. 2014. Molecular cloning and characterization of three cDNAs encoding 1-deoxy-d-xylulose-5- phosphate synthase in Aquilaria sinensis (Lour.) Gilg. Plant Physiol. Biochem. 82:133-141.   DOI
22 Yang, L. -E., Huang, X. -Q., Lu, Q. -Q., Zhu, J. -Y. & Lu, S. 2016. Cloning and characterization of the geranylgeranyl diphosphate synthase (GGPS) responsible for carotenoid biosynthesis in Pyropia umbilicalis. J. Appl. Phycol. 28:671-678.   DOI
23 Yang, L. -E., Jin, Q. -P., Xiao, Y., Xu, P. & Lu, S. 2013. Improved methods for basic molecular manipulation of the red alga Porphyra umbilicalis (Rhodophyta: Bangiales). J. Appl. Phycol. 25:245-252.   DOI
24 Grauvogel, C. & Petersen, J. 2007. Isoprenoid biosynthesis authenticates the classification of the green alga Mesostigma viride as an ancient streptophyte. Gene 396:125-133.   DOI
25 Cock, J. M., Sterck, L., Rouze, P., Scornet, D., Allen, A. E., Amoutzias, G., Anthouard, V., Artiguenave, F., Aury, J. M. & Badger, J. H. 2010. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465:617-621.   DOI
26 Cordoba, E., Porta, H., Arroyo, A., San Roman, C., Medina, L., Rodriguez-Concepcion, M. & Leon, P. 2011. Functional characterization of the three genes encoding 1-deoxy-D-xylulose 5-phosphate synthase in maize. J. Exp. Bot. 62:2023-2038.   DOI
27 Davies, F. K., Jinkerson, R. E. & Posewitz, M. C. 2015. Toward a photosynthetic microbial platform for terpenoid engineering. Photosynth. Res. 123:265-284.   DOI
28 de Oliveira, L. S., Gregoracci, G. B., Silva, G. G. Z., Salgado, L. T., Filho, G. A., Alves-Ferreira, M., Pereira, R. C. & Thompson, F. L. 2012. Transcriptomic analysis of the red seaweed Laurencia dendroidea (Florideophyceae, Rhodophyta) and its microbiome. BMC Genomics 13:487.   DOI
29 Frommolt, R., Werner, S., Paulsen, H., Goss, R., Wilhelm, C., Zauner, S., Maier, U. G., Grossman, A. R., Bhattacharya, D. & Lohr, M. 2008. Ancient recruitment by chromists of green algal genes encoding enzymes for carotenoid biosynthesis. Mol. Biol. Evol. 25:2653-2667.   DOI
30 Hans, J., Hause, B., Strack, D. & Walter, M. H. 2004. Cloning, characterization, and immunolocalization of a mycorrhiza-inducible 1-deoxy-d-xylulose 5-phosphate reductoisomerase in arbuscule-containing cells of maize. Plant Physiol. 134:614-624.   DOI
31 Huang, W., Ye, J., Zhang, J., Lin, Y., He, M. & Huang, J. 2016. Transcriptome analysis of Chlorella zofingiensis to identify genes and their expressions involved in astaxanthin and triacylglycerol biosynthesis. Algal Res. 17:236-243.   DOI
32 Liu, J., Xu, Y., Liang, L. & Wei, J. 2015. Molecular cloning, characterization and expression analysis of the gene encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase from Aquilaria sinensis (Lour.) Gilg. J. Genet. 94:239-249.   DOI
33 Lohr, M., Schwender, J. & Polle, J. E. W. 2012. Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. Plant Sci. 185-186:9-22.   DOI
34 Luo, Q., Zhu, Z., Zhu, Z., Yang, R., Qian, F., Chen, H. & Yan, X. 2014. Different responses to heat shock stress revealed heteromorphic adaptation strategy of Pyropia haitanensis (Bangiales, Rhodophyta). PLoS ONE 9:e94354.   DOI
35 Masse, G., Belt, S. T., Rowland, S. J. & Rohmer, M. 2004. Isoprenoid biosynthesis in the diatoms Rhizosolenia setigera (Brightwell) and Haslea ostrearia (Simonsen). Proc. Natl. Acad. Sci. U. S. A. 101:4413-4418.   DOI
36 Zhang, B. Y., Zhu, D. L., Wang, G. C. & Peng, G. 2014. Characterization of the AOX gene and cyanide-resistant respiration in Pyropia haitanensis (Rhodophyta). J. Appl. Phycol. 26:2425-2433.   DOI
37 Kuzuyama, T., Shimizu, T., Takahashi, S. & Seto, H. 1998. Fosmidomycin, a specific inhibitor of 1-deoxy-d-xylulose 5-phosphate reductoisomerase in the nonmevalonate pathway for terpenoid biosynthesis. Tetrahedron. Lett. 39:7913-7916.   DOI
38 Matsuzaki, M., Misumi, O., Shin-I, T., Maruyama, S., Takahara, M., Miyagishima, S. Y., Mori, T., Nishida, K., Yagisawa, F., Nishida, K., Yoshida, Y., Nishimura, Y., Nakao, S., Kobayashi, T., Momoyama, Y., Higashiyama, T., Minoda, A., Sano, M., Nomoto, H., Oishi, K., Hayashi, H., Ohta, F., Nishizaka, S., Haga, S., Miura, S., Morishita, T., Kabeya, Y., Terasawa, K., Suzuki, Y., Ishii, Y., Asakawa, S., Takano, H., Ohta, N., Kuroiwa, H., Tanaka, K., Shimizu, N., Sugano, S., Sato, N., Nozaki, H., Ogasawara, N., Kohara, Y. & Kuroiwa, T. 2004. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653-657.   DOI
39 Okada, K., Saito, T., Nakagawa, T., Kawamukai, M. & Kamiya, Y. 2000. Five geranylgeranyl diphosphate synthases expressed in different organs are localized into three subcellular compartments in Arabidopsis. Plant Physiol. 122:1045-1056.   DOI
40 Paniagua-Michel, J., Capa-Robles, W., Olmos-Soto, J. & Gutierrez-Millan, L. E. 2009. The carotenogenesis pathway via the isoprenoid-${\beta}$-carotene interference approach in a new strain of Dunaliella salina isolated from Baja California Mexico. Mar. Drugs 7:45-56.   DOI
41 Blouin, N. A., Brodie, J. A., Grossman, A. C., Xu, P. & Brawley, S. H. 2011. Porphyra: a marine crop shaped by stress. Trends. Plant. Sci. 16:29-37.   DOI
42 Adl, S. M., Simpson, A. G., Farmer, M. A., Andersen, R. A., Anderson, O. R., Barta, J. R., Bowser, S. S., Brugerolle, G., Fensome, R. A., Fredericq, S., James, T. Y., Karpov, S., Kugrens, P., Krug, J., Lane, C. E., Lewis, L. A., Lodge, J., Lynn, D. H., Mann, D. G., McCourt, R. M., Mendoza, L., Moestrup, O., Mozley-Standridge, S. E., Nerad, T. A., Shearer, C. A., Smirnov, A. V., Spiegel, F. W. & Taylor, M. F. 2005. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J. Eukaryot. Microbiol. 52:399-451.   DOI
43 Bennett, A. & Bogorad, L. 1973. Complementary chromatic adaptation in a filamentous blue-green alga. J. Cell. Biol. 58:1245-1257.