• Title/Summary/Keyword: D-optimal experimental design

Search Result 201, Processing Time 0.028 seconds

Design Optimization of Pin-Fin Sharp to Enhance Heat Transfer

  • Li, Ping;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.185-190
    • /
    • 2005
  • This work presents a numerical procedure to optimize the elliptic-shaped pin fin arrays to enhance turbulent heat transfer. The response surface method is used as an optimization technique with Reynolds-averaged Navier Stokes analysis of flow and heat transfer. Shear stress transport (SST) turbulence model is used as a turbulence closure. Computational results for average heat transfer rate show a reasonable agreement with the experimental data. Four variables including major axis length, minor axis length, pitch and the pin fin length nondimensionalized by duct height are chosen as design variables. The objective function is defined as a linear combination of heat transfer and friction-loss related terms with weighting factor. D-optimal design is used to reduce the data points, and, with only 28 points, reliable response surface is obtained. Optimum shapes of the pin-fin arrays have been obtained in the range from 0.0 to 0.1 of weighting factor.

  • PDF

Optimal Temperature and Light Intensity for Improved Mixotrophic Metabolism of Chlorella sorokiniana Treating Livestock Wastewater

  • Lee, Tae-Hun;Jang, Jae Kyung;Kim, Hyun-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.2010-2018
    • /
    • 2017
  • Mixotrophic microalgal growth gives a great premise for wastewater treatment based on photoautotrophic nutrient utilization and heterotrophic organic removal while producing renewable biomass. There remains a need for a control strategy to enrich them in a photobioreactor. This study performed a series of batch experiments using a mixotroph, Chlorella sorokiniana, to characterize optimal guidelines of mixotrophic growth based on a statistical design of the experiment. Using a central composite design, this study evaluated how temperature and light irradiance are associated with $CO_2$ capture and organic carbon respiration through biomass production and ammonia removal kinetics. By conducting regressions on the experimental data, response surfaces were created to suggest proper ranges of temperature and light irradiance that mixotrophs can beneficially use as two types of energy sources. The results identified that efficient mixotrophic metabolism of Chlorella sorokiniana for organics and inorganics occurs at the temperature of $30-40^{\circ}C$ and diurnal light condition of $150-200{\mu}mol\;E{\cdot}m^{-2}{\cdot}s^{-1}$. The optimal specific growth rate and ammonia removal rate were recorded as 0.51/d and 0.56/h on average, respectively, and the confirmation test verified that the organic removal rate was $105mg\;COD{\cdot}l^{-1}{\cdot}d^{-1}$. These results support the development of a viable option for sustainable treatment and effluent quality management of problematic livestock wastewater.

Laminate Weight Optimization of Composite Ship Structures based on Experimental Data (FRP 기계적 물성을 고려한 복합소재 선체구조 적층판 경량화 설계)

  • Oh, Daekyun;Han, Zhiqiang;Noh, Jackyou;Jeong, Sookhyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.2
    • /
    • pp.104-113
    • /
    • 2020
  • The study aims to improve the previous theory-based algorithm on the lightweight design of laminate structures of a composite ship based on the mechanical properties of fiber, resin, and laminates obtained from experiments. From a case study on using a hydrometer to measure the specific gravity of e-glass fiber woven roving fabric/polyester resin used as the raw material for the hull of a 52 ft composite ship, the equation for calculating the weight of laminate was redefined, and the relationship between decreasing mechanical properties and increasing glass content was determined from the results of material testing according to ASTM D5083 and ASTM D790. After applying these experimental data to the existing algorithm and improving it, a possible laminate design that maximizes the specific strength of the composite material was confirmed. In a case study that applied the existing algorithm based on rules, the optimal lightweight design of composite structures was achieved when the weight fraction of e-glass fiber was increased by 57.5% compared with that in the original design, but the improved algorithm allowed for an increase of only 17.5%.

Evaluation of Car Interior Noise by Using EEG (뇌파를 이용한 적정 자동차 내부소음의 평가)

  • 김정룡;박창순
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.24 no.65
    • /
    • pp.65-73
    • /
    • 2001
  • In this study, psychophysiological stress was quantitatively evaluated at various car interior noise levels by using Electroencephalogram(EEG). An experiment was performed to investigate the most comfortable range of noise level during simulated driving condition. Twelve healthy volunteers participated in the experiment. They were asked to operate the driving simulator while six levels of interior noise were given, such as 45dB(A), 50dB(A), 55dB(A), 60dB(A), 70dB(A), 80dB(A), and maximal subjective noise level. EEG signals were recorded for 60 seconds in each noise level. The power spectral analysis was performed to analyze EEG signal. At the same time, psychological stress was also measured subjectively by using a magnitude estimation method. The results showed that subjective stress and EEG spectrum indicated a statistically significant difference between noise levels. In particular, high level noise produced an increase in beta power at temporal(T3, T4) areas. It was also found that beta activity was highly correlated with subjective perception of discomfort, and subjects responded to car interior noise as arousing or negative stimuli. Moreover, beta power remained stable above 70dB(A), whereas subjective discomfort continued to increase even above 70dB(A) We concluded that brain waves could provide psychophysiological information of drivers emotional reaction to car interior noise. Thus, EEG parameters could be a new measure to determine optimal noise level in ergonomic workplace design after further verification in various experimental conditions.

  • PDF

Experimental Validation of Topology Design Optimization Considering Lamination Direction of Three-dimensional Printing (3D 프린팅 적층 방향을 고려한 위상최적설계의 실험적 검증)

  • Park, Hee-Man;Lee, Gyu-Bin;Kim, Jin-san;Seon, Chae-Rim;Yoon, Minho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.3
    • /
    • pp.191-196
    • /
    • 2022
  • In this study, the anisotropic mechanical property of fused deposition modeling three-dimensional (3D) printing based on lamination direction was verified by a tensile test. Moreover, the property was applied to solid isotropic materials with penalization-based topology optimization. The case of the lower control arm, one of the automotive suspension components, was considered as a benchmark problem. The optimal topological results varied depending on the external load and anisotropic property. Based on these results, two test specimens were fabricated by varying the lamination direction of 3D printing; a tensile test utilizing 3D non-contact strain gauge was also conducted. The measured strain was compared with that obtained by computer-aided engineering response analysis. Quantitatively, the measurement and analysis results are found to have good agreement. The effectiveness of topology optimization considering the lamination direction of 3D printing was confirmed by the experimental result.

A Study of Optimal Lotion Manufacturing Process Containing Angelica gigas Nakai Extracts by Utilizing Experimental Design and Design Space Convergence Analysis (실험 설계와 디자인 스페이스 융합 분석을 통한 Angelica gigas Nakai 추출물을 함유한 로션 제조의 최적 공정 연구)

  • Pyo, Jae-Sung;Kim, Hyun-Jin;Yoon, Seon-hye;Park, Jae-Kyu;Kim, Kang-Min
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.3
    • /
    • pp.132-140
    • /
    • 2022
  • This study was conducted to identify the optimal lotion manufacturing conditions with decursin and decursinol angelate of Angelica gigas Nakai extraction. Lotion was confirmed that it had viscosity (5,208±112 cPs), assay (99.71±1.01%), and pH (5.62) for 3 months. The optimization of manufacturing conditions of mixing 4 for lotion formulation were made by 22+3 full factorial design. Mixing temperature (40-80℃) and mixing time (10-30 min) were used as independent variables with three responses(assay, pH, and weight variation) as critical quality attributes (CQAs). The model for assay and weight variation identified a proper fit having a determination coefficient of the regression equation (about 0.9) and a p-value less than 0.05. Estimated conditions for the optimal manufacturing process of lotion were 61.93℃ in mixing temperature and 15.85 min in mixing time. Predicted values at the mixing temperature (60℃) and mixing time (20 min) were 100.69% of assay, 5.57 of pH, and 98.07% of weight variation. In the verification of the actual measurement the obtained values showed 100.29±0.98% of assay, 5.57±0.02 of pH, and 98.27±0.89% of weight variation, respectively, in good agreement with predicted values.

Control of Crane Systems by a Digital Redesign Method (디지탈재설계법에 의한 크레인계의 제어)

  • 이동철;신민생;하주식;김상봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.41-52
    • /
    • 1992
  • An algorithm of transforming continuous-time state feedback gains into equivalent discrete-time feedback gains or vice versa is proposed using bilinear transformation. The proposed method is evaluated experimentally by an application control of a mobile crane system which is implemented by 16bits micro computer with A/D and D/A converters. It has been shown from the experimental result that the transformed feedback gains are virtually identical to the optimal discrete gain over range of significant sampling time. Since the transformed matrix is composed by a distinct relationship between continuous-time gain and discrete-time gain, it is noted that the proposed method can be regarded as an explicit gain transformation method compared to the other methods using series expansion.

A Development of Optimal Algorithms for N/M/D/F/Fmax Scheduling Problems (N/M/D/F/Fmax 일정계획 문제에서 최적 알고리듬의 개발)

  • 최성운
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.13 no.21
    • /
    • pp.91-100
    • /
    • 1990
  • This paper is concerned with the development of optimal algorithms for multi-stage flowshop scheduling problems with sequence dependent setup times. In the previous researches the setup time of a job is considered to be able to begin at the earliest opportunity given a particular sequence at the start of operations. In this paper the setup time of a job is considered to be able to begin only at the completion of that job on the previous machine to reflect the effects of the setup time to the performance measure of sequence dependent setup time flowshop scheduling. The results of the study consist of two areas; first, a general integer programming(IP) model is formulated and a nixed integer linear programming(MILP) model is also formulated by introducing a new binary variable. Second a depth-first branch and bound algorithm is developed. To reduce the computational burdens we use the best heuristic schedule developed by Choi(1989) as the first trial. The experiments for developed algorithm are designed for a 4$\times$3$\times$3 factorial design with 360 observations. The experimental factors are PS(ratio of processing time to setup time), M(number of machines), N(number of jobs).

  • PDF

Monolithic and Resolution with design of 10bit Current output Type Digital-to-Analog Converter (개선된 선형성과 해상도를 가진 10비트 전류 출력형 디지털-아날로그 변환기의 설계)

  • Song, Jun-Gue;Shin, Gun-Soon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.187-191
    • /
    • 2007
  • This paper describes a 3.3V 10 bit CMOS digital-to-analog converter with a divided architecture of a 7 MSB and a 3 LSB, which uses an optimal Thermal-to-Binary Decoding method with monotonicity, glitch energy. The output stage utilizes here implements a return-to-zero circuit to obtain the dynamic performance. Most of D/A converters in decoding circuit is complicated, occupies a large chip area. For these problems, this paper describes a D/A converter using an optimal Thermal-to-Binary Decoding method. the designed D/A converter using the CMOS n-well $0.35{\mu}m$ process0. The experimental data shows that the rise/fall time, settling time, and INL/DNL are 1.90ns/2.0ns, 12.79ns, and a less than ${\pm}2.5/{\pm}0.7$ LSB, respectively. The power dissipation of the D/A converter with a single power supply of 3.3V is about 250mW.

  • PDF

A Design of 10bit current output Type Digital-to-Analog converter with self-Calibration Techique for high Resolution (고해상도를 위한 DAC 오차 보정법을 가진 10-비트 전류 출력형 디지털-아날로그 변환기 설계)

  • Song, Jung-Gue;Shin, Gun-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.691-698
    • /
    • 2008
  • This paper describes a 3.3V 10 bit CMOS digital-to-analog converter with a divided architecture of a 7 MSB and a 3 LSB, which uses an optimal Thermal-to-Binary Decoding method with monotonicity, glitch energy. The output stage utilizes here implements a return-to-zero circuit to obtain the dynamic performance. Most of D/A converters in decoding circuit is complicated, occupies a large chip area. For these problems, this paper describes a D/A converter using an optimal Thermal-to-Binary Decoding method. the designed D/A converter using the CMOS n-well $0.35{\mu}m$ process0. The experimental data shows that the rise/fall time, settling time, and INL/DNL are 1.90ns/2.0ns, 12.79ns, and a less than ${\pm}2.5/{\pm}0.7\;LSB$, respectively. The power dissipation of the D/A converter with a single power supply of 3.3V is about 250mW.