• Title/Summary/Keyword: D-continuous function

Search Result 170, Processing Time 0.021 seconds

ON D-COMPACT TOPOLOGICAL SPACES

  • QOQAZEH, HAMZA;AL-QUDAH, YOUSEF;ALMOUSA, MOHAMMAD;JARADAT, ALI
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.883-894
    • /
    • 2021
  • The aim of this work is to introduce for the first time the concept of D-set. This is done by defining a special type of cover called a D-cover. we present some results to study the properties of D-compact spaces and their relations with other topological spaces. Several examples are discussed to illustrate and support our main results. Our results extend and generalized many will known results in the literature.

CONTINUOUS HAMILTONIAN DYNAMICS AND AREA-PRESERVING HOMEOMORPHISM GROUP OF D2

  • Oh, Yong-Geun
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.795-834
    • /
    • 2016
  • The main purpose of this paper is to propose a scheme of a proof of the nonsimpleness of the group $Homeo^{\Omega}$ ($D^2$, ${\partial}D^2$) of area preserving homeomorphisms of the 2-disc $D^2$. We first establish the existence of Alexander isotopy in the category of Hamiltonian homeomorphisms. This reduces the question of extendability of the well-known Calabi homomorphism Cal : $Diff^{\Omega}$ ($D^1$, ${\partial}D^2$)${\rightarrow}{\mathbb{R}}$ to a homomorphism ${\bar{Cal}}$ : Hameo($D^2$, ${\partial}D^2$)${\rightarrow}{\mathbb{R}}$ to that of the vanishing of the basic phase function $f_{\underline{F}}$, a Floer theoretic graph selector constructed in [9], that is associated to the graph of the topological Hamiltonian loop and its normalized Hamiltonian ${\underline{F}}$ on $S^2$ that is obtained via the natural embedding $D^2{\hookrightarrow}S^2$. Here Hameo($D^2$, ${\partial}D^2$) is the group of Hamiltonian homeomorphisms introduced by $M{\ddot{u}}ller$ and the author [18]. We then provide an evidence of this vanishing conjecture by proving the conjecture for the special class of weakly graphical topological Hamiltonian loops on $D^2$ via a study of the associated Hamiton-Jacobi equation.

Band engineering of bilayer graphene by metal atoms: First-principles calculations

  • Oh, D.H.;Shin, B.G.;Ahn, J.R.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.267-267
    • /
    • 2010
  • The continuous change in the electronic band structure of metal-adsorbed bilayer graphene was calculated as a function of metal coverage using first-principles calculations. Instead of modifying the unit cell size as a function of metal coverage, the distance between the metal atoms and bilayer graphene in the same $2{\times}2$ unit unit cell was controlled to change the total charges transferred from the metal atoms to bilayer graphene. The validity of the theoretical method was confirmed by reproducing the continuous change in the electronic band structure of K-adsorbed epitaxial bilayer graphene, as shown by Ohta et al. [Science 313, 951 (2006)]. In addition, the changes in the electronic band structures of undoped, n-type, and p-type bilayer graphene were studied schematically as a function of metal coverage using the theoretical method.

  • PDF

Development of 3D Stereoscopic Image Generation System Using Real-time Preview Function in 3D Modeling Tools

  • Yun, Chang-Ok;Yun, Tae-Soo;Lee, Dong-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.6
    • /
    • pp.746-754
    • /
    • 2008
  • A 3D stereoscopic image is generated by interdigitating every scene with video editing tools that are rendered by two cameras' views in 3D modeling tools, like Autodesk MAX(R) and Autodesk MAYA(R). However, the depth of object from a static scene and the continuous stereo effect in the view of transformation, are not represented in a natural method. This is because after choosing the settings of arbitrary angle of convergence and the distance between the modeling and those two cameras, the user needs to render the view from both cameras. So, the user needs a process of controlling the camera's interval and rendering repetitively, which takes too much time. Therefore, in this paper, we will propose the 3D stereoscopic image editing system for solving such problems as well as exposing the system's inherent limitations. We can generate the view of two cameras and can confirm the stereo effect in real-time on 3D modeling tools. Then, we can intuitively determine immersion of 3D stereoscopic image in real-time, by using the 3D stereoscopic image preview function.

  • PDF

FIXED POINT THEOREMS IN d-COMPLETE TOPOLOGICAL SPACES

  • Cho, Seong-Hoon;Lee, Jae-Hyun
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.1009-1015
    • /
    • 2010
  • We prove the existence of common fixed points for three self mappings satisfying contractive conditions in d-complete topological spaces. Our results are generalizations of result of Troy L. Hicks and B. E. Roades[Troy L. Hicks and B. E. Roades, Fixed points for pairs of mappings in d-complete topological spaces, Int. J. Math. and Math. Sci., 16(2)(1993), 259-266].

2-D Robust Design Optimization on Unstructured Meshes

  • Lee Sang Wook;Kwon Oh Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.240-242
    • /
    • 2003
  • A method for performing two-dimensional lift-constraint drag minimization in inviscid compressible flows on unstructured meshes is developed. Sensitivities of objective function with respect to the design variables are efficiently obtained by using a continuous adjoint method. In addition, parallel algorithm is used in multi-point design optimization to enhance the computational efficiency. The characteristics of single-point and multi-point optimization are examined, and the comparison of these two method is presented.

  • PDF

HADAMARD-TYPE FRACTIONAL CALCULUS

  • Anatoly A.Kilbas
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.6
    • /
    • pp.1191-1204
    • /
    • 2001
  • The paper is devoted to the study of fractional integration and differentiation on a finite interval [a, b] of the real axis in the frame of Hadamard setting. The constructions under consideration generalize the modified integration $\int_{a}^{x}(t/x)^{\mu}f(t)dt/t$ and the modified differentiation ${\delta}+{\mu}({\delta}=xD,D=d/dx)$ with real $\mu$, being taken n times. Conditions are given for such a Hadamard-type fractional integration operator to be bounded in the space $X^{p}_{c}$(a, b) of Lebesgue measurable functions f on $R_{+}=(0,{\infty})$ such that for c${\in}R=(-{\infty}{\infty})$, in particular in the space $L^{p}(0,{\infty})\;(1{\le}{\le}{\infty})$. The existence almost every where is established for the coorresponding Hadamard-type fractional derivative for a function g(x) such that $x^{p}$g(x) have $\delta$ derivatives up to order n-1 on [a, b] and ${\delta}^{n-1}[x^{\mu}$g(x)] is absolutely continuous on [a, b]. Semigroup and reciprocal properties for the above operators are proved.

  • PDF

A CHARACTERIZATION OF GAMMA DISTRIBUTION BY INDEPENDENT PROPERTY

  • Lee, Min-Young;Lim, Eun-Hyuk
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • Let {$X_n,\;n{\geq}1}$ be a sequence of independent identically distributed(i.i.d.) sequence of positive random variables with common absolutely continuous distribution function(cdf) F(x) and probability density function(pdf) f(x) and $E(X^2)<{\infty}$. The random variables $\frac{X_i{\cdot}X_j}{(\Sigma^n_{k=1}X_k)^{2}}$ and $\Sigma^n_{k=1}X_k$ are independent for $1{\leq}i if and only if {$X_n,\;n{\geq}1}$ have gamma distribution.

  • PDF

FIRST PASSAGE PROBLEM FOR WIENER PATHS CROSSING DIFFERENTIABLE CURVES

  • Jang, Yu-Seon;Kim, Sung-Lai;Kim, Sung-Kyun
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.475-484
    • /
    • 2005
  • Let W(t) be a Wiener path, let $\xi\;:\;[0,\;{\infty})\;\to\;\mathbb{R}$ be a continuous and increasing function satisfying $\xi$(0) > 0, let $$T_{/xi}=inf\{t{\geq}0\;:\;W(t){\geq}\xi(t)\}$$ be the first-passage time of W over $\xi$, and let F denote the distribution function of $T_{\xi}$. Then the first passage problem has a unique continuous solution as following $$F(t)=u(t)+{\sum_{n=1}^\infty}\int_0^t\;H_n(t,s)u(s)ds$$, where $$u(t)=2\Psi(\xi(t)/\sqrt{t})\;and\;H_1(t,s)=d\Phi\;(\{\xi(t)-\xi(s)\}/\sqrt{t-s})/ds\;for\;0\;{\leq}\;s.

Relative Frequency of Order Statistics in Independent and Identically Distributed Random Vectors

  • Park, So-Ryoung;Kwon, Hyoung-Moon;Kim, Sun-Yong;Song, Iick-Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.2
    • /
    • pp.243-254
    • /
    • 2006
  • The relative frequency of order statistics is investigated for independent and identically distributed (i.i.d.) random variables. Specifically, it is shown that the probability $Pr\{X_{[s]}=x\}$ is no less than the probability $Pr\{X_{[r]}=x\}$ at any point $x{\geqq}x_0$ when r$X_{[r]}$ denotes the r-th order statistic of an i.i.d. discrete random vector and $x_0$ depends on the population probability distribution. A similar result for i.i.d. continuous random vectors is also presented.