• 제목/요약/키워드: D-Arabinose

검색결과 104건 처리시간 0.021초

Inhibition of biofilm formation of periodontal pathogens by D-Arabinose

  • An, Sun-Jin;Namkung, Jong-Uk;Ha, Kyung-Won;Jun, Hye-Kyoung;Kim, Hyun Young;Choi, Bong-Kyu
    • International Journal of Oral Biology
    • /
    • 제46권3호
    • /
    • pp.111-118
    • /
    • 2021
  • Periodontitis and periimplantitis are caused as a result of dental biofilm formation. This biofilm is composed of multiple species of pathogens. Therefore, controlling biofilm formation is critical for disease prevention. To inhibit biofilm formation, sugars can be used to interrupt lectin-involving interactions between bacteria or between bacteria and a host. In this study, we evaluated the effect of D-Arabinose on biofilm formation of putative periodontal pathogens as well as the quorum sensing activity and whole protein profiles of the pathogens. Crystal violet staining, confocal laser scanning microscopy, and scanning electron microscopy revealed that D-Arabinose inhibited biofilm formation of Porphyromonas gingivalis, Fusobacterium nucleatum, and Tannerella forsythia. D-Arabinose also significantly inhibited the activity of autoinducer 2 of F. nucleatum and the expression of representative bacterial virulence genes. Furthermore, D-Arabinose treatment altered the expression of some bacterial proteins. These results demonstrate that D-Arabinose can be used as an antibiofilm agent for the prevention of periodontal infections.

Tragacanth gum 의 신다당류(新多糖類) C 의 화학구조(化學構造) - Tragacanth gum의 신다당류(新多糖類)에 관(關)한 연구(硏究) 제2보(第二報) - (Studies on the Chemical Structure of the New Polysaccharide C - (The New Polysaccharides of Gum Tragacanth. II) -)

  • 이성환
    • Applied Biological Chemistry
    • /
    • 제3권
    • /
    • pp.25-48
    • /
    • 1962
  • tragacanth gum의 화학구조(化學構造)를 구명(究明)하기 위(爲)하여 미국(美國) 약전(藥典)의 tragacanth gum 분말(粉末)을 가지고 다음의 실험(實驗)을 통(通)하여 이의 성분(成分)의 하나인 polysaccharide C를 분리(分離)하여 이의 화학구조(化學構造)를 밝혔다. (1) tragacanth gum을 85% 주정(酒精)으로 처리(處理)해서 중성다당류(中性多糖類)로 polysaccharide C를 분리(分離)하였으며 구성당(構成糖)으로 L-rhamnose, D-xylose, L-arabinose 및 D-galactose를 paper chromatography와 Cellulose column chromatography로 분리(分離), 동정(同定)하였다. 이의 molar ratio는 2:1:17:9이며 비선광도(比旋光度)는 $[{\alpha}]^{30}_D-72.2이다. (2) 구성당(構成糖)의 결합위치(結合位置)를 구명(究明)하기 위(爲)해 Hawarth 법(法)과 Purdietldir(試藥)을 가지고 methyl화(化)시켜 methyl화(化) polysaccharide C를 얻었으며 비선광도(比旋光度) $[{\alpha}]^{22}_D-102를 보였다. 이것을 가수분해(加水分解)시켜 paper chromatography와 column chromatography를 통(通)해 methyl화단당(化單糖)으로 1,3,5-tri-O-methyl-L-arabofuranose, 3,4-di-O-methyl-L-rhamnose, 2,3-di-O-methyl-D-xylose, 2,3,4-tri-O-methyl-D-galactopyranose, 2,4-di-O-methyl-L-arabopyronose, 2,4-di-O-methyl-D-galactose, 2-O-methyl-L-arabinose 및 L-arabinose를 분리(分離), 동정(同定)하였다. (3) 산(酸)의 각종농도(各種濃度)에 따른 부분적(部分的) 가수분해(加水分解)를 시켜 polysaccharide C의 end group, 측지(側枝) 또는 주쇄(主鎖)를 이루는 구성당(構成糖)을 밝히기 위(爲)하여 0.05 N-HCl로 제1차(第一次) 가수분해(加水分解). 0.1N-HCl로 제2차(第二次) 가수분해(加水分解), 0.3N-HCl로 제3차(第三次) 가수분해(加水分解)를 하여 가수분해물(加水分解物)과 비가수분해물(非加水分解物)에서 각각(各各) 다음과 같은 구성단당(構成單糖)을 검출(檢出)하고 이들의 molar ratio를 측정(測定)하였다. 제1차(第一次) 가수분해물(加水分解物)(A)에서 L-arbinose, 비가수분해물(非加水分解物)(A')에서 L-rhamnose, D-xylose, L-arabinose 및 D-galactose; 제2차(第二次) 가수분해물(加水分解物)(B)에서 L-arabinose와 D-galactose, 비가수분해물(非加水分解物)(B')에서 L-rhamnose, D-xylose, L-arabinose, 및 D-galactose; 제3차(第三次) 가수분해물(加水分解物)(C)에서 L-rhamnose, D-xylose, L-arabinose 및 D-galactose, 비가수분해물(非加水分解物)(C')에서 D-xylose와 D-galactose를 검출(檢出)하였다. (4) 구성당(構成糖)의 형태(形態)와 구조(構造)를 밝히기 위(爲)해 polysaccharide C에 대한 periodate산화(酸化) 실험(實驗)을 하여 $C_5H_8O_4$당(當) periodate의 소비(消費)와 formic acid의 생성량(生成量)을 측정(測定)하였는데 periodate의 소비량(消費量)은 1.23 mole, formic acid의 생성량(生成量)은 0.78 mole이다.

  • PDF

Enzymatic Production of D-Tagatose, a Sugar-substituting Sweetener, from D-Galactose

  • Noh, Hoe-Jin;Kim, Pil
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2000년도 Proceedings of 2000 KSAM International Symposium and Spring Meeting
    • /
    • pp.68-75
    • /
    • 2000
  • D-Tagatose is a potential bulking agent in food as a non-calorific sweetener. To produce D-tagatose from cheaper resources, plasmids harboring the L-arabinose isomerase gene (araA) from Escherichia coli was constructed because L-arabinose isomerase was previously suggested as an enzyme that mediates the bioconversion of galactose to tagatose as well as that of arabinose to ribulose. In the cultures of recombinant E.coli with pTC101, which harboring araA of E.coli, tagatose was produced from galactose in 9.9 % yield. The enzyme extract of E.coli containing pTC101 also converted galactose into tagatose in 96.4 % yield. For the economic production of D-tagatose, an L-arabinose isomerase of E.coli was immobilized using covalent binding on agarose. While the free L-arabinose isomerase produced tagatose with the rate of 0.48 mg/U$.$day, the immobilized one stably converted galactose into average 7.5 g/l$.$day of tagatose during 7 days with higher productivity of 0.87 mg/U$.$day. In the scaled up immobilized enzyme system, 99.9 g/l of tagatose was produced from galactose with 20 % equilibrium in 48 hrs. The process was stably repeated additional 2 times with tagatose production of 104.1 and 103.5 g/l.

  • PDF

양이온 교환 크로마토그래피와 HPLC에서의 L-arabinose와 D-ribose의 분리 및 등온 흡착곡선 결정 (Determination of Adsorption Isotherms and Separation of L-arabinose and D-ribose in Cation Exchange Chromatography and HPLC)

  • 전영주;김인호
    • KSBB Journal
    • /
    • 제23권1호
    • /
    • pp.31-36
    • /
    • 2008
  • The use of L-carbohydrates and their corresponding nucleosides in medicinal application has greatly increased. For example L-ribose has been much in demand as the starting material for curing hepatitis B. High performance liquid chromatography (HPLC) method was studied for the analysis of ribose and arabinose fractions from ion exchange chromatography (IEC). Dowex Monosphere 99 Ca/320 resin was packed in IEC to separate ribose and arabinose under various operating conditions. $NH_{2}$ and sugar HPLC columns were then used to analyze the fractions from the IEC column. Pulse input method (PIM) was also used to measure adsorption isotherms of ribose and arabinose in the Dowex column and HPLC columns. Experimental results and simulations by ASPEN chromatography were compared with fair agreement.

Metabolic Engineering for Improved Fermentation of L-Arabinose

  • Ye, Suji;Kim, Jeong-won;Kim, Soo Rin
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권3호
    • /
    • pp.339-346
    • /
    • 2019
  • L-Arabinose, a five carbon sugar, has not been considered as an important bioresource because most studies have focused on D-xylose, another type of five-carbon sugar that is prevalent as a monomeric structure of hemicellulose. In fact, L-arabinose is also an important monomer of hemicellulose, but its content is much more significant in pectin (3-22%, g/g pectin), which is considered an alternative biomass due to its low lignin content and mass production as juice-processing waste. This review presents native and engineered microorganisms that can ferment L-arabinose. Saccharomyces cerevisiae is highlighted as the most preferred engineering host for expressing a heterologous arabinose pathway for producing ethanol. Because metabolic engineering efforts have been limited so far, with this review as momentum, more attention to research is needed on the fermentation of L-arabinose as well as the utilization of pectin-rich biomass.

Xylan 분해균주인 Bacillus stearothermophilus의 오탄당 이용

  • 이효선;조쌍구;최용진
    • 한국미생물·생명공학회지
    • /
    • 제24권4호
    • /
    • pp.385-392
    • /
    • 1996
  • Bacillus stearotheymophilus, a potent xylanolytic bacterium isolated from soil, was tested for the strain's strategies of pentose utilization and the evidence of substrate preferences. The strain metabolized glucose, xylose, ribose, maltose, cellobiose, sucrose, arabinose and xylitol. The efficacy of the sugars as a carbon and energy source in this strain was of the order named above. The organism, however, could not grow on glycerol as a sole growth substrate. During cultivation on a mixture of glucose and xylose or arabinose, the major hydrolytic products of xylan, B. stearothermophilus displayed classical diauxic growth in which glucose was utilized during the first phase. On the other hand, the pentose utilization was prevented immediately upon addition of glucose. Cellobiose was preferred over xylose or arabinose. In contrast, maltose and pentose were co-utilized, and also no preference on between xylose and arabinose. Enzymatic studies indicated that B. stearothermophilus possessed constitutive hexokinase, a key enzyme of the glucose metabolic system. While, the production of $^{D}$-xylose isomerase, $^{D}$-xylulokinase and $^{D}$-arabinose isomerase essential for pentose phosphate pathway were induced by xylose, xylan, and xylitol but repressed by glucose. Taken together, the results suggested that the sequential utilization of B. stearothermophilus would be mediated by catabolite regulatory mechanisms such as catabolite inhibition or inducer exclusion.

  • PDF

A New Thermophile Strain of Geobacillus thermodenitrificans Having L- Arabinose Isomerase Activity for Tagatose Production

  • Baek, Dae-Heoun;Lee, Yu-Jin;Sin, Hong-Sig;Oh, Deok-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권2호
    • /
    • pp.312-316
    • /
    • 2004
  • Five strains, producing bacterial thermostable L-arabinose isomerase, were isolated from Korean soil samples obtained from compost under high temperature circumstances. Among these strains, the CBG-Al showed the highest L-arabinose isomerase activity at $60^\circ{C}$ and was selected as a D-tagatose producing strain from D-galactose. This strain was identified as Geobacillus thermodenitrificans based on the 16S rRNA analysis, and biological and biochemical characteristics. The isolated strain was aerobic, rod-shaped, Gram-positive, nonmotile, and an endospore-forming bacterium. No growth was detected in culture temperature below $40^\circ{C}$. The maximum growth temperature and maximum temperature of enzyme activity were $75^\circ{C}$ and $65^\circ{C}$, respectively. In metal ion effects, $Ca^{2+}$ was the most effective enzyme activator with the reaction rate by 150%. In a 5-1 jar fermentor with 3-1 MY medium, L-arabinose isomerase activity was growth-associated and pH decreased rapidly after the initial logarithmic phase.

Comparative Analysis of Tagatose Productivity of Immobilized L-Arabinose Isomerase Expressed in Escherichia coli and Bacillus subtilis

  • Cheon, Ji-Na;Kim, Seong-Bo;Park, Seong-Won;Han, Jong-Kwon;Kim, Pil
    • Food Science and Biotechnology
    • /
    • 제17권3호
    • /
    • pp.655-658
    • /
    • 2008
  • Although arabinose isomerase (E.C. 5.3.1.4), a commercial enzyme for edible tagatose bioconversion, can be expressed in an Escherichia coli system, this expression system might leave noxious by-products in food. To develop an eligible tagatose bioconversion with food-safe system, we compared the tagatose production activity of immobilized arabinose isomerase expressed in Bacillus subtilis (a host generally recognized as safe) with that of the enzyme expressed in E. coli. A 48% increase in tagatose production (4.3 g tagatose/L at $69.4\;mg/L{\cdot}hr$) was found using the B. subtilis-expressed immobilized enzyme system, compared to the E. coli-expressed enzyme system (2.9 g tagatose/L). The increased productivity with safety of the B. subtilis-expressed arabinose isomerase suggests that it is a more eligible candidate for commercial tagatose production.

사철쑥과 그늘쑥의 다당류 연구 (Characterization of Polysaccharides from Artemisia capillaris and Artemisia sylvatica)

  • 황은주;권학철;정칠만;문형인;김선여;지옥표;이강노
    • 약학회지
    • /
    • 제43권4호
    • /
    • pp.423-428
    • /
    • 1999
  • Two polysaccharides, ACP-UMP and ACP-ULF, were purified from the aerial part of Artemisia capillaris by anion-exchange chromatography, ultrafiltration, and gel filtration chromatography. The polysaccharides appeared to be homogenious from the results of HPLC. The molecular weights of ACP-UMF and ACP-ULF were estimated to be 16305.92 D and 3292.26 D, respectively, by MALDI-TOF MS. The sugar compositions were determined by GC to be arabinose 10.05%, xylose 1.67%, mannose 5.45G, galactose 39.06%, glucose 15.43% for ACP-UMF and arabinose 11.60%, xylose 11.15%, mannose 6.37% galactose 32.47%, glucose 18.35% for ACP-ULF. A polysaccharide, SP-M was determined to be 2462.52 D by MALDI-TOF MS. SP-M consisted mainly of rhamnose 36.49%, arabinose 29.00%, and glucose 19.38%. Incubation of CCl4-intoxicated hepatocytes with ACP-UMF reduced the levels of glutamic pyruvic transaminase (GPT) and cellular malondialdehyde (MDA) to 62.8% and 23.8%. ACP-ULF also reduced the levels of GPT and MDA to 46.1% and 38.1% and 26.3%, respectively.

  • PDF

Amyloglucosidase Catalyzed Syntheses of Bakuchiol Glycosides in Supercritical Carbon Dioxide

  • Manohar, Balaraman;Divakar, Soundar;Sankar, Kadimi Udaya
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권8호
    • /
    • pp.1760-1766
    • /
    • 2009
  • Enzymatic syntheses of water soluble Bakuchiol glycosides were carried out in di-isopropyl ether organic media using amyloglucosidase from Rhizopus mold. The reactions were carried out under conventional reflux conditions and in supercritical $CO_2$ atmospheric conditions. Out of the eleven carbohydrate molecules employed for the reaction, D-glucose, D-ribose and D-arabinose gave glycosides in yields of 9.0% to 51.4% under conventional reflux conditions. Under supercritical $CO_2$ atmosphere (100 bar pressure at 50 ${^{\circ}C}$), bakuchiol formed glycosides with Dglucose, D-galactose, D-mannose, D-fructose, D-ribose, D-arabinose, D-sorbitol and D-mannitol in yields ranging from 9% to 46.6%. Out of the bakuchiol glycosides prepared, 6-O-(6-D-fructofruranosyl)bakuchiol showed the best antioxidant (1.4 mM) and ACE inhibitory activities (0.64 mM).