• Title/Summary/Keyword: D value

Search Result 8,627, Processing Time 0.051 seconds

Growth and Quality of Two Melon Cultivars in Hydroponics Affected by Mixing Ratio of Coir Substrate and Different Irrigation Amount on Spring Season (멜론 봄 재배 시 코이어 배지경에서 배지 혼합 비율과 급액량에 따른 생육 및 품질)

  • Choi, Su hyun;Lim, Mi Yeong;Choi, Gyeong Lee;Kim, So Hui;Jeong, Ho Jeong
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.376-387
    • /
    • 2019
  • Melons are mostly grown in soil, but it is susceptible to damage due to injury by continuous cropping such as Fusarium wilt and root rot. Hydroponic cultivation system can overcome the disadvantages of soil cultivation with precise nutrition management and a clean environment. When using the coir substrate, the most environmentally friendly organic substrate used for hydroponics, it is analyzed how the growth and fruit quality of the melon depends on the ratio of chips and dust and the amount of irrigation. The purpose of this study was to provide the basic data of melon hydroponics when cultivated in spring. The two types of the coir substrates used in the experiments were chip and dust ratios of 3 :7 and 5 : 5 respectively. The substrate with high dust ratios had excellent physical characteristics, such as container capacity and total porosity, and the drainage EC level showed a high value of $3.0-6.8dS{\cdot}m^{-1}$. When the amount of irrigation is provided based on the drainage rate, the group provided the nutrient solution on the basis of 10% drainage supplied 91 L per plant, which was reduced by about 30% compared to the group with the highest water supply. In addition, the total drainage showed less than 10 L per plant with a minimum water supply and was reduced by 30 - 70% in substrate with a high dust rates. In substrate with high water supply and high dust ratio, leaf growth and fruit enlargement were good, and the soluble solids content varies greatly from cultivar to cultivar. If you provided the amount of irrigation based on 10% drainage rate, the fruit weight will be decreased, but the amount of irrigation can be reduced. Therefore, it is considered that managing the water & nutrient properly taking into account the characteristics of coir substrate and cultivar can produce melon of uniform quality using hydroponics.

Comparison of Measured and Calculated Carboxylation Rate, Electron Transfer Rate and Photosynthesis Rate Response to Different Light Intensity and Leaf Temperature in Semi-closed Greenhouse with Carbon Dioxide Fertilization for Tomato Cultivation (반밀폐형 온실 내에서 탄산가스 시비에 따른 광강도와 엽온에 반응한 토마토 잎의 최대 카복실화율, 전자전달율 및 광합성율 실측값과 모델링 방정식에 의한 예측값의 비교)

  • Choi, Eun-Young;Jeong, Young-Ae;An, Seung-Hyun;Jang, Dong-Cheol;Kim, Dae-Hyun;Lee, Dong-Soo;Kwon, Jin-Kyung;Woo, Young-Hoe
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.401-409
    • /
    • 2021
  • This study aimed to estimate the photosynthetic capacity of tomato plants grown in a semi-closed greenhouse using temperature response models of plant photosynthesis by calculating the ribulose 1,5-bisphosphate carboxylase/oxygenase maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax), thermal breakdown (high-temperature inhibition), and leaf respiration to predict the optimal conditions of the CO2-controlled greenhouse, for maximizing the photosynthetic rate. Gas exchange measurements for the A-Ci curve response to CO2 level with different light intensities {PAR (Photosynthetically Active Radiation) 200µmol·m-2·s-1 to 1500µmol·m-2·s-1} and leaf temperatures (20℃ to 35℃) were conducted with a portable infrared gas analyzer system. Arrhenius function, net CO2 assimilation (An), thermal breakdown, and daylight leaf respiration (Rd) were also calculated using the modeling equation. Estimated Jmax, An, Arrhenius function value, and thermal breakdown decreased in response to increased leaf temperature (> 30℃), and the optimum leaf temperature for the estimated Jmax was 30℃. The CO2 saturation point of the fifth leaf from the apical region was reached at 600ppm for 200 and 400µmol·m-2·s-1 of PAR, at 800ppm for 600 and 800µmol·m-2·s-1 of PAR, at 1000ppm for 1000µmol of PAR, and at 1500ppm for 1200 and 1500µmol·m-2·s-1 of PAR levels. The results suggest that the optimal conditions of CO2 concentration can be determined, using the photosynthetic model equation, to improve the photosynthetic rates of fruit vegetables grown in greenhouses.

Seismic response characteristics of the hypothetical subsea tunnel in the fault zone with various material properties (다양한 물성의 단층대를 통과하는 가상해저터널의 지진 시 응답 특성)

  • Jang, Dong In;Kwak, Chang-Won;Park, Inn-Joon;Kim, Chang-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1061-1071
    • /
    • 2018
  • A subsea tunnel, being a super-sized underground structure must ensure safety at the time of earthquake, as well as at ordinary times. At the time of earthquake, in particular, of a subsea tunnel, a variety of response behaviors are induced owing to relative rigidity to the surrounding ground, or difference of displacement, so that the behavior characteristics can be hardly anticipated. The investigation aims to understand the behavior characteristics switched by earthquake of an imaginary subsea tunnel which passes through a fault zone having different physical properties from those of the surrounding ground. In order to achieve the aim, dynamic response behaviors of a subsea tunnel which passes through a fault zone were observed by means of indoor experiments. For the sake of improved earthquake resistance, a shape of subsea tunnel to which flexible segments have been applied was considered. Afterward, it is believed that a D/B can be established through 3-dimensional earthquake resistance interpretation of various grounds, on the basis of verified results from the experiments and interpretations under various conditions. The present investigation performed 1 g shaking table test in order to verify the result of 3-dimensional earthquake resistance interpretation. A model considering the similitude (1:100) of a scale-down model test was manufactured, and tests for three (3) Cases were carried out. Incident seismic wave was introduced by artificial seismic wave having both long-period and short-period earthquake properties in the horizontal direction which is rectangular to the processing direction of the tunnel, so that a fault zone was modeled. For numerical analysis, elastic modulus of the fault zone was assumed 1/5 value of the modulus of individual grounds surround the tunnel, in order to simulate a fault zone. Resultantly, reduced acceleration was confirmed with increase of physical properties of the fault zone, and the result from the shaking table test showed the same tendency as the result from 3-dimensional interpretation.

Pathophysiological Regulation of Vascular Smooth Muscle Cells by Prostaglandin F2α-dependent Activation of Phospholipase C-β3 (Prostaglandin F2α 의존적 phospholipase C-β3 활성화에 의한 혈관평활근세포의 병태생리 조절 연구)

  • Kang, Ki Ung;Oh, Jun Young;Lee, Yun Ha;Lee, Hye Sun;Jin, Seo Yeon;Bae, Sun Sik
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1516-1522
    • /
    • 2018
  • Atherosclerosis is an obstructive vessel disease mainly caused by chronic arterial inflammation to which the proliferation and migration of vascular smooth muscle cells (VSMCs) is the main pathological response. In the present study, the primary responsible inflammatory cytokine and its signaling pathway was investigated. The proliferation and migration of VSMCs was significantly enhanced by the prostaglandin $F_{2{\alpha}}$ ($PGF_{2{\alpha}}$), while neither was affected by tumor necrosis factor ${\alpha}$. Prostacyclin $I_2$ was seen to enhance the proliferation of VSMCs while simultaneously suppressing their migration. Both prostaglandin $D_2$ and prostaglandin $E_2$ significantly enhanced the migration of VSMCs, however, proliferation was not affected by either of them. The proliferation and migration of VSMCs stimulated by $PGF_{2{\alpha}}$ progressed in a dose-dependent manner; the $EC_{50}$ value of both proliferation and migration was $0.1{\mu}M$. VSMCs highly expressed the phospholipase isoform $C-{\beta}3$ ($PLC-{\beta}3$) while others such as $PLC-{\beta}1$, $PLC-{\beta}2$, and $PLC-{\beta}4$ were not expressed. Inhibition of the PLCs by U73122 completely blocked the $PGF_{2{\alpha}}$-induced migration of VSMCs, and, in addition, silencing $PLC-{\beta}3$ significantly diminished the $PGF_{2{\alpha}}$-induced proliferation and migration of VSMCs. Given these results, we suggest that $PGF_{2{\alpha}}$ plays a crucial role in the proliferation and migration of VSMCs, and activation of $PLC-{\beta}3$ could be involved in their $PGF_{2{\alpha}}$-dependent migration.

Changes in the constituents and UV-photoprotective activity of Astragalus membranaceus caused by roasting (황기의 볶음 조건에 따른 성분 및 자외선 광보호 활성 변화)

  • Park, Jeong-Yong;Lee, Ji Yeon;Kim, Hyung Don;Jang, Gwi Yeong;Seo, Kyung Hye
    • Journal of Nutrition and Health
    • /
    • v.52 no.5
    • /
    • pp.413-421
    • /
    • 2019
  • Purpose: Astragalus membranaceus (AM) is an important traditional medicinal herb. Pharmacological research has indicated that AM has various physiological activities such as antioxidant, anti-inflammatory, immunoregulatory, anticancer, hypolipidemic, antihyperglycemic, and hepatoprotective activities. The bioactive substances responsible for the physiological activities in AM, including many antioxidant substances, change during the roasting process. This study investigated and compared the changes in the antioxidant constituents of AM caused by roasting. Methods: DPPH (1,1-diphenyl-2-picryl hydrazyl) and $ABTS^+$ (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt) radical scavenging activities and their total phenolic content (TPC) were measured. High-performance liquid chromatography (HPLC) analysis was performed to confirm any changes in the isoflavonoids of roasted AM (R-AM),. The cell viability of UVB-induced HDF (Human dermal fibroblast) cells treated with AM and R-AM extracts was investigated. The comet assay was used to examine the inhibitory effects of R-AM extracts on DNA damage caused by oxidative stress. Results: The DPPH and $ABTS^+$ radical scavenging activities were $564.6{\pm}20.9$ and $108.2{\pm}3.1$ ($IC_{50}$ value) respectively, from the 2R-AM. The total phenol content was $47.80{\pm}1.40mg$ GAE/g from the 1R-AM. The values of calycosin and formononetin, which are the known isoflavonoid constituents of AM, were $778.58{\pm}2.72$ and $726.80{\pm}3.45{\mu}g/g$ respectively, from the 2R-AM. Treatment of the HDF cells with R-AM ($50{\sim}200{\mu}g/mL$) did not affect the cell viability. Furthermore, the R-AM extracts effectively protected against UVB-induced DNA damage. Conclusion: The findings of this study indicate that R-AM increases its isoflavonoid constituents and protects against UVB-induced DNA damage in HDF cells.

A Study on the Possibility of Recycling Coir Organic Substrates for using Strawberry Hydroponics Media (토마토 폐배지를 딸기 수경재배 배지로 재이용 가능성 연구)

  • Lee, Gyu-Bin;Park, Young-Hoon;Choi, Young-Whan;Son, Beung-Gu;Kim, Jooh-Yup;Kang, Nam-Jun;Kang, Jum-Soon
    • Journal of Korea Society of Waste Management
    • /
    • v.34 no.2
    • /
    • pp.205-213
    • /
    • 2017
  • The current study was performed to investigate the effect of recycling coir substrates on the growth, fruit yield, and quality of strawberry plants. Analysis of physical properties revealed that the pH of a fresh coir substrate was 5.04 while those of substrates reused for one and two years were 5.20 and 5.33, respectively. The electrical conductivity (EC) of a new substrate was as high as $4.58dS{\cdot}m^{-1}$. This can cause salt stress after transplanting. The EC tended to decrease as the substrate was recycled, and the EC of a two-year recycled substrate was $1.48dS{\cdot}m^{-1}$. The fresh substrate had lower nitrogen and calcium concentrations, but higher phosphate, potassium, and sodium concentrations than the recycled coir substrate. The coir substrates recycled for one or two years maintained better chemical properties for plant growth than the fresh substrate. Strawberry growth varied depending on the number of years that the coir substrate was recycled. In general, strawberries grown in substrates that had been reused for two years did better than those grown in substrates that had been reused once or were fresh. Ninety days after transplanting, a plant grown in a substrate that had been reused for two years contained 25 leaves, which was 3.6 more than with a fresh substrate. In addition, the plants grown in a substrate that had been reused for two years exhibited larger leaf areas than those grown in other substrates. Coir substrates that had been reused for one year increased the number and area of leaves, but not as much as the substrate that had been reused for two years. One- and two-year reused coir substrates increased the weight of strawberries produced relative to the unused substrate, but the difference was not statistically significant. The plants grown in two-year reused substrates were longer and wider, as well. Also, the number of fruits per plant was higher when substrates were reused. Specifically, the number of fruits per plant was 28.7 with a two-year reused substrate, but only 22.2 with a fresh substrate. The fruit color indices (as represented by their Hunter L, a, b values) were not considerably affected by recycling of the coir substrate. The Hunter L value, which indicates the brightness of the fruit, did not change significantly when the substrate was recycled. Neither Hunter a (red) nor b (yellow) values were changed by recycling. In addition, there were no significant changes in the hardnesses, acidities, or soluble solid-acid ratios of fruits grown in recycled substrates. Thus, it is thought that recycling the coir substrate does not affect measures of fruit quality such as color, hardness, and sugar content. Overall, reuse of coir substrates from hydroponic culture as high-bed strawberry growth substrates would solve the problems of new substrate costs and the disposal of substrates that had been used once.

Effects of Dry Heat Treatment on the Reduction of Main Food-Borne Bacteria on Alfalfa Seeds (건열처리를 이용한 알팔파의 주요 식중독균 저감화)

  • Hong, Soon-Young;Kim, Su-jin;Bang, Woo-Suk
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.4
    • /
    • pp.225-231
    • /
    • 2022
  • In this study, the conditions of dry heat treatment (21 days at 65℃, 16 days at 70℃, 10 days at 75℃, and 7 days at 80℃) were investigated to inactivate Bacillus cereus ATCC 12480, Listeria monocytogenes ATCC SSA81, Staphylococcus aureus ATCC 6538, Escherichia coli O157:H7 ATCC 43894, and Salmonella Typhimurium ATCC 14028 on alfalfa seeds, without affecting the rate of germination of seeds. Alfalfa seeds were inoculated at levels of 6-7 log CFU/g and treated with dry heat at 65℃, 70℃, 75℃, and 80℃; thereafter, the rate of seed germination was determined. The rate of germination was set at 70%, according to the market standards. The bacteria were inactivated when B. cereus was treated with dry heat for 21 days at 65℃, 18 days at 70℃, 14 days at 75℃, and 4 days at 80℃; L. monocytogenes was treated for 21 days at 65℃, 18 days at 70℃, 12 days at 75℃, and 7 days at 80℃; S. aureus was treated for 18 days at 65℃, 18 days at 70℃, 11 days at 75℃, and 4 days at 80℃; E. coli O157:H7 was treated for 21 days at 65℃, 18 days at 70℃, 12 days at 75℃, and 6 days at 80℃; and Sal. Typhimurium was treated for 24 days at 65℃, 22 days at 70℃, 14 days at 75℃, and 7 days at 80℃. For all bacteria, the D-value (R2 = 0.5656-0.7957) significantly decreased when the temperature increased from 65℃ to 80℃ (P<0.05). Since dry heat treatment of alfalfa seeds at 80℃ for 7 days affects their germination rate, dry heat treatment at 75℃ for 14 days is the most effective way to ensure their safety. This study suggests a potential method of bacterial inactivation using dry heat treatment to increase the microbiological safety of sprouts.

Varietal Difference and Environmental Variation in Protein Content and/or Amino Acid Composition of Rice Seed (쌀의 단백질함량과 아미노산 조성의 품종간 차이와 환경변이)

  • Choi, Hae-Chune;Cho, Soo-Yeon;Kim, Kwang-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.5
    • /
    • pp.379-386
    • /
    • 1990
  • Varietal difference of protein content in forty eight Korean recommended rice cultivars and environmental Variation in protein content of milled rice harvested at six sites of the middle and/or southern plain and four locations of mid-mountainous and/or alpine area in 1989 were investigated. Also, the composition of amino acid in milled rice was compared among three rice varieties: a high-protein japonica rice, Nongbaek, a high-protein Tongil-type rice, Yongjubyeo, and a low-protein japonica rice, Hwaseongbyeo. Korean recommended rice varieties showed 7.93% of average protein content with varietal variation from 5.5% to 10.2% for milled rice harvested in 1988, and 9.17% of mean protein content with the variation from 6.3% to 12.0% for milled rice harvested in 1989. Tongil-type rice was about 1% higher in protein content of milled rice than japonica. The low-protein japonica rice, Hwaseongbyeo exhibited lower content of essential amino acids per g of rice flour sample than the high-protein japoinica, Nongbaek and/or Tongil-type rice, Yongjubyeo, but the relative content of essential amino acids per 16.8g of nitrogen in milled rice of the former was not so different with those of the latters. Among amino acids the content of glutamic acid was highest and among essential amino acids the content of leucine was highest while methionine was lowest. The protein content of milled rice was negatively correlated with days from seeding to heading, K/Mg ratio, alkali digestion value(l-7) and amylose content, but it was positively correlated with translucency and magnesium content of milled rice. The protein content of milled rice harvested in the southern plain paddy field was about 1% higher compared with those harvested in the Middle plain. Also, the protein content of milled rice harvested in the southern mid-mountainous and alpine area was about 0.8% higher compared with those harvested in the resemble altitude area of the middle-northern part of Korea. The contribution of environmental variation to total in plain area was about 28.1% while that in mid-mountainous and alpine area was about 56.4%.

  • PDF

A Study on the Method for Quantifying CO2 Contents in Decarbonated Slag Materials by Differential Thermal Gravimetric Analysis (DTG 분석법을 활용한 슬래그류 비탄산염 재료의 CO2 정량 측정방법 연구)

  • Jae-Won Choi;Byoung-Know You;Yong-Sik Chu;Min-Cheol Han
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.8-16
    • /
    • 2024
  • Limestone (CaCO3, calcium carbonate), which is used as a raw material in the portland cement and steel industry, emits CO2 through decarbonation by high temperatures in the manufacturing process. To reduce CO2 emissions by the use of raw materials like limestone, it has been proposed to replace limestone with various industrial by-products that contain CaO but less or none of the carbonated minerals, that cause CO2 emissions. Loss of Ignition (LOI), Thermogravimetric analysis (TG), and Infrared Spectroscopy (IR) are used to quantitative the amount of CO2 emission by using these industrial by-products, but CO2 emissions can be either over or underestimated depending on the characteristics of by-product materials. In this study, we estimated CO2 contents by LOI, TG, IR and DTG(Differential Thermogravimetric analysis) of calcite(CaCO3) and samples that contain CO2 in the form of carbonate and whose weight increases by oxidation at high temperatures. The test results showed for CaCO3 samples, all test methods have a sufficient level of reliability. On the other hand, for the CO2 content of the sample whose weight increases at high temperature, LOI and TG did not properly estimate the CO2 content of the sample, and IR tended to overestimate compared to the predicted value, but the estimated result by DTG was close to the predicted valu e. From these resu lts, in the case of samples that contain less than a few percent of CO2 and whose weight increases during the temperature that carbonate minerals decompose, estimating the CO2 content using DTG is a more reasonable way than LOI, TG, and IR.

Germination Characteristics of Eight Species for Production of Medicinal Crops in Vertical Farms (수직농장에서 약용작물 생산을 위한 8종의 종자 발아 특성)

  • Ga Oun Lee;Hyuk Joon Kwon;Ye Lin Kim;In-Je Kang;Gyu-Sik Yang;Ju-Sung Cho;Ki-Ho Son
    • Journal of Bio-Environment Control
    • /
    • v.33 no.2
    • /
    • pp.79-87
    • /
    • 2024
  • This study confirmed the effects of seed shape, temperature, and light treatment on the germination of eight species of medicinal crops to produce high-value crops in vertical farms. Eight species of medicinal seeds were selected, and the seed shape, seed length, seed width, seed length/width ratio, and one hundred seed weight were measured. The seed moisture content was confirmed. Eight species of medicinal seeds were sown, and the germination rate, germination energy, mean daily germination, and mean germination time were investigated according to temperature (15, 20, 25, 25/15℃) and light treatment. Each of the eight medicinal seeds showed different seed shapes. The moisture content of the seeds showed a moisture content rate of over 20% in the five medicinal seeds. Medicinal seeds that showed a germination rate of over 50% were Angelica gigas Nakai, Codonopsis lanceolata (Siebold & Zucc.) Benth. & Hook.f. ex Trautv., and Achyranthes bidentata Blume var. japonica Miq. seeds. A. gigas seed showed a germination rate of 67.34 ± 4.38% under 25/15℃ light conditions, and C. lanceolata seed showed a germination rate of over 50% under both temperature and light treatment conditions, especially the highest germination rate of 82.67 ± 1.46% under 15℃ dark conditions. Peucedanum japonicum Thunb. seed showed a germination rate of 52.34 ± 1.77% under dark conditions at 20℃, and the highest germination rate was 51.67 ± 3.79% under dark conditions at 15℃. The maximum germination energy was 74.00 ± 4.94% in C. lanceolata seed. The maximum mean daily germination was 14.94 ± 0.15 days in P. japonicum seed. Astragalus penduliflorus Lam. var. dahuricus (DC.) X.Y.Zhu seed showed the highest mean germination time of 34.19 ± 4.71. Through this study, it was determined that A. gigas, C. lanceolata, and A. penduliflours seeds would be suitable for production in vertical farms based on the characteristics of each medicinal seed through analysis of seed germination characteristics.