DOI QR코드

DOI QR Code

A Study on the Method for Quantifying CO2 Contents in Decarbonated Slag Materials by Differential Thermal Gravimetric Analysis

DTG 분석법을 활용한 슬래그류 비탄산염 재료의 CO2 정량 측정방법 연구

  • 최재원 (아세아시멘트 기술연구소) ;
  • 유병노 (아세아시멘트 기술연구소) ;
  • 추용식 (한국세라믹기술원 저탄소.디지털전환사업단) ;
  • 한민철 (청주대학교 건축공학과)
  • Received : 2023.12.12
  • Accepted : 2023.12.22
  • Published : 2024.03.30

Abstract

Limestone (CaCO3, calcium carbonate), which is used as a raw material in the portland cement and steel industry, emits CO2 through decarbonation by high temperatures in the manufacturing process. To reduce CO2 emissions by the use of raw materials like limestone, it has been proposed to replace limestone with various industrial by-products that contain CaO but less or none of the carbonated minerals, that cause CO2 emissions. Loss of Ignition (LOI), Thermogravimetric analysis (TG), and Infrared Spectroscopy (IR) are used to quantitative the amount of CO2 emission by using these industrial by-products, but CO2 emissions can be either over or underestimated depending on the characteristics of by-product materials. In this study, we estimated CO2 contents by LOI, TG, IR and DTG(Differential Thermogravimetric analysis) of calcite(CaCO3) and samples that contain CO2 in the form of carbonate and whose weight increases by oxidation at high temperatures. The test results showed for CaCO3 samples, all test methods have a sufficient level of reliability. On the other hand, for the CO2 content of the sample whose weight increases at high temperature, LOI and TG did not properly estimate the CO2 content of the sample, and IR tended to overestimate compared to the predicted value, but the estimated result by DTG was close to the predicted valu e. From these resu lts, in the case of samples that contain less than a few percent of CO2 and whose weight increases during the temperature that carbonate minerals decompose, estimating the CO2 content using DTG is a more reasonable way than LOI, TG, and IR.

포틀랜드 시멘트, 철강 산업 등에서 원료로 사용되는 석회석(CaCO3, calcium carbonate)은 고온에서 탈탄산 분해 반응에 의해 CO2를 배출한다. 석회석 사용에 의한 CO2 배출을 저감하기 위해 CO2 배출의 원인이 되는 carbonate 광물을 함유하지 않거나 함유량이 적으면서도 CaO를 함유한 산업부산물로 석회석을 대체하려는 기술이 제안되었다. 이들 산업부산물에 함유된 CO2를 정량 측정하는 방법으로 Loss of Ignition(LOI), Thermo-Gravimetric Analysis(TG), Infrared Spectroscopy(IR) 등이 사용되나, 산업부산물의 특성에 따라 CO2 배출량을 과대 또는 과소 평가할 우려가 있다. 본 연구에서는 CaCO3 시료와 고온에서 산화반응에 의해 중량이 증가하는 시료 각각에 carbonate 형태로 함유된 CO2의 함량을 측정하는 방법으로 LOI, TG, IR 및 DTG(Differential Thermo-Gravimetric Analysis) 방법의 신뢰도와 시험방법별 측정결과를 비교 검토하였다. CaCO3 시료에 대해서는 검토한 모든 시험결과는 충분한 수준의 신뢰도를 나타내었다. 반면, 고온에서 중량이 증가하는 시료의 CO2 함량에 대해서는 LOI와 TG는 시료의 CO2 함량을 제대로 평가하지 못했으며, IR은 예측값에 비해 CO2 함량을 과대평가하는 경향을 나타내었으나, DTG에 의한 평가 결과는 예측값에 근사하였다. 이로부터 수 % 미만 수준의 미량의 CO2를 함유하고, carbonate 광물의 분해 배출 온도에서 CO2 배출에 의한 중량 감소 외에도 중량이 변화하는 시료의 경우 DTG를 이용하여 CO2 함량을 구하는 것이 LOI나 TG, IR을 이용한 평가보다 합리적이라고 판단된다.

Keywords

Acknowledgement

본 연구는 2022년도 산업통상부의 재원으로 한국산업기술평가관리원-시멘트원료(석회석)대체순환자원기술개발사업의 지원을 받아 수행된 연구(No. RS-2022-00154993) 지원에 의해 수행되었습니다.

References

  1. ASTM (2018). Appendixes X2, ASTM C 114-18 Standard Test Methods for Chemical Analysis of Hydraulic Cement.
  2. Bernal, L.S., Hussein, K.X.O. (2016). Effect of testing condition on the loss on ignition results of anhydrous granulated blast furnace slags determined via thermogravimetry, Proceedings of the International RILEM conference Materials, Systems and Structures in Civil Engineering, Segment on Concrete with Supplementary Cementitious Materials, 299-307.
  3. Bernal, S.A., Juenger, M.C.G., Ke, X., Matthes, W., Lothenbach, B., Belie, N.D., Provis, J.L. (2017). Characterization of supplementary cementitious materials by thermal analysis, Materials and Structures, 50, 1-13. https://doi.org/10.1617/s11527-016-0885-6
  4. Brinkmann, K.U., Laqua, W. (1985). Decomposition of fayalite(Fe2SiO4) in an oxygen potential gradient at 1,418 K, Physics and Chemistry of Minerals, 12, 283-290. https://doi.org/10.1007/BF00310341
  5. Bruckman, V.J., Wriessnig, K. (2013). Improved soil carbonate determination by FT-IR and X-ray analysis, Environmental Chemistry Letters, 11, 65-70. https://doi.org/10.1007/s10311-012-0380-4
  6. Eo, I.S. (2018). Composite gas measurement system using NDIR method, Journal of the Korea Academia-Industrial Cooperation Society, 19(3), 624-629. https://doi.org/10.5762/KAIS.2018.19.3.624
  7. Elfaki, J.T., Gafei, M.O., Sulieman, M.M., Ali, M.E. (2016). Assessment of calcimetric and titrimetric methods for calcium carbonate estimation of five soil types in central Sudan, Journal of Geoscience and Environment Protection, 4(1), 120-127. https://doi.org/10.4236/gep.2016.41014
  8. Francis, R., Lees, D.G. (1976). Some observations on the growth mechanism of hematite during the oxidation of iron at 823 K, Corrosion Science, 16(11), 847-850. https://doi.org/10.1016/0010-938X(76)90014-7
  9. Gaballah, I., Rraghy, S.E., Gleitzer, C. (1978). Oxidation kinetics of fayalite and growth of hematite whiskers. Journal of Materials Science, 13, 1971-1976. https://doi.org/10.1007/BF00552904
  10. Karanasiou, A., Diapouli, E., Cavalli, F., Eleftheriadis, K., Viana, M., Alastuey, A., Querol, X., Reche, C. (2011). On the quantification of atmospheric carbonate carbon by thermal/optical analysis protocols, Atmospheric Measurement Techniques, 4(11), 2409-2419. https://doi.org/10.5194/amt-4-2409-2011
  11. KEA (Korea Energy Agency) (2022). KVER 006 Methodology for the Emission Reduction by Replacing Carbonate Raw Materials with Non-Carbonate Raw Materials, KVER (Korea Voluntary Emission Reduction) Program.
  12. Kemp, S.J., Lewis, A.L., Rushton, J.C. (2022). Detection and quantification of low levels of carbonate mineral species using thermogravimetric-mass spectrometry to validate CO2 drawdown via enhanced rock weathering, Applied Geochemistry, 146, 105465.
  13. Komnitsas, K., Bartzas, G., Karmali, V., Petrakis, E., Kurylak, W., Pietek, G., Kanasiewicz, J. (2019). Assessment of alkali activation potential of a Polish ferronickel slag, Sustainability, 11(7), 1863.
  14. Kontoyannis, C.G., Vagenas, N.V. (2000). Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy, Analyst, 125(2), 251-255. https://doi.org/10.1039/a908609i
  15. Legodi, M.A., Waal, D., Potgieter, J.H., Potgiester, S.S. (2001a). Rapid determination of CaCO3 in mixtures utilising FT-IR spectroscopy, Minerals Engineering, 14(9), 1107-1111. https://doi.org/10.1016/S0892-6875(01)00116-9
  16. Legodi, M.A., Da Waal, D., Potgieter, J.H. (2001b). Quantitative determination of CaCO3 in cement blends by FT-IR, Applied Spectroscopy, 55(3), 361-365. https://doi.org/10.1366/0003702011951786
  17. Mackwell, S.J. (1992). Oxidation kinetics of fayalite (Fe2SiO4). Physics and Chemistry of Minerals, 19, 220-228. https://doi.org/10.1007/BF00202311
  18. Morera-Chavarria A., Griffioen, J., Behrends,T. (2016). Optimized sequential extraction for carbonates: Quantification and δ13C analysis of calcite, dolomite and siderite, Chemical Geology, 443, 146-157. https://doi.org/10.1016/j.chemgeo.2016.09.025
  19. Morgan, D.J., Barnes, P.A., Charsley, E.L., Rumsey, J.A., Warrington, S.B., Howes, R.J., Jackson, A.R.W., Raper, E.S., Gardiner, D.J., Baker R.R. (1984). Experimental techniques in thermal analysis, Analytical Proceedings, 21, 3-13. https://doi.org/10.1039/ap9842100003
  20. Prasetyo, A.B., Maksum, A., Soedarsono, J.W., Firdiyono, F. (2019). Thermal characteristics of ferronickel slag on roasting process with addition of sodium carbonate (Na2CO3). IOP Conference Series: Materials Science and Engineering. 541, 012037. https://doi.org/10.1088/1757-899X/541/1/012037
  21. Scrivener, K., Snellings, R., Lothenbach, B. (2018). A Practical Guide to Microstructural Analysis of Cementitious Materials, CRC Press, Switzerland
  22. Seebauer, V., Petek, J., Staudinger, G. (1997). Effects of particle size, heating rate and pressure on measurement of pyrolysis kinetics by thermogravimetric analysis, Fuel, 76(13), 1277-1282. https://doi.org/10.1016/S0016-2361(97)00106-3
  23. Smith, G.P.S., Gordon, K.C., Holroyd, S.E. (2013). Raman spectroscopic quantifcation of calcium carbonate in spiked milk powder samples, Vibrational Spectroscopy, 67, 87-91. https://doi.org/10.1016/j.vibspec.2013.04.005
  24. So, R.T., Blair, N.E., Masterson, A.L. (2020). Carbonate mineral identification and quantification in sediment matrices using diffuse reflectance infrared Fourier transform spectroscopy, Environmental Chemistry Letters, 18, 1725-1730. https://doi.org/10.1007/s10311-020-01027-4
  25. Tatzber, M., Stemmer, M., Spiegel, H., Katzlberger, C., Haberhauer, G., Gerzabek, M.H. (2007). An alternative method to measure carbonate in soils by FT-IR spectroscopy, Environmental Chemistry Letters, 5, 9-12. https://doi.org/10.1007/s10311-006-0079-5
  26. UNFCCC. (2022). AM0121 Emission Reduction from Partial Switching of Raw Materials and Increasing the Share of Additives in the Production of Blended Cement, CDM Methodology Booklet, 4th Ed.
  27. Walenta, G., Fullmann, T. (2004). Advances in quantitative XRD analysis for clinker, cements, and cementitious additions, Powder Diffraction, 19(1), 40-44. https://doi.org/10.1154/1.1649328
  28. WBCSD. (2004). World Business Council for Sustainable Development, A Corporate Accounting and Reporting Standard.