DOI QR코드

DOI QR Code

Effects of Dry Heat Treatment on the Reduction of Main Food-Borne Bacteria on Alfalfa Seeds

건열처리를 이용한 알팔파의 주요 식중독균 저감화

  • Hong, Soon-Young (Department of Food and Nutrition, Yeungnam University) ;
  • Kim, Su-jin (Department of Food and Nutrition, Yeungnam University) ;
  • Bang, Woo-Suk (Department of Food and Nutrition, Yeungnam University)
  • Received : 2022.06.09
  • Accepted : 2022.07.27
  • Published : 2022.08.30

Abstract

In this study, the conditions of dry heat treatment (21 days at 65℃, 16 days at 70℃, 10 days at 75℃, and 7 days at 80℃) were investigated to inactivate Bacillus cereus ATCC 12480, Listeria monocytogenes ATCC SSA81, Staphylococcus aureus ATCC 6538, Escherichia coli O157:H7 ATCC 43894, and Salmonella Typhimurium ATCC 14028 on alfalfa seeds, without affecting the rate of germination of seeds. Alfalfa seeds were inoculated at levels of 6-7 log CFU/g and treated with dry heat at 65℃, 70℃, 75℃, and 80℃; thereafter, the rate of seed germination was determined. The rate of germination was set at 70%, according to the market standards. The bacteria were inactivated when B. cereus was treated with dry heat for 21 days at 65℃, 18 days at 70℃, 14 days at 75℃, and 4 days at 80℃; L. monocytogenes was treated for 21 days at 65℃, 18 days at 70℃, 12 days at 75℃, and 7 days at 80℃; S. aureus was treated for 18 days at 65℃, 18 days at 70℃, 11 days at 75℃, and 4 days at 80℃; E. coli O157:H7 was treated for 21 days at 65℃, 18 days at 70℃, 12 days at 75℃, and 6 days at 80℃; and Sal. Typhimurium was treated for 24 days at 65℃, 22 days at 70℃, 14 days at 75℃, and 7 days at 80℃. For all bacteria, the D-value (R2 = 0.5656-0.7957) significantly decreased when the temperature increased from 65℃ to 80℃ (P<0.05). Since dry heat treatment of alfalfa seeds at 80℃ for 7 days affects their germination rate, dry heat treatment at 75℃ for 14 days is the most effective way to ensure their safety. This study suggests a potential method of bacterial inactivation using dry heat treatment to increase the microbiological safety of sprouts.

본 연구에서는 건열처리를 통해 알팔파 종자에 접종된 Bacillus cereus ATCC 12480, Listeria monocytogenes ATCC SSA81, Staphylococcus aureus ATCC 6538, Escherichia coli O157:H7 ATCC 43894, Salmonella Typhimurium ATCC 14028을 발아율에 영향 없이 불활성화 시키는 조건(65℃에서 21일, 70℃에서 16일, 75℃에서 10일, 80℃에서 7일)을 조사하였다. 알팔파 종자를 6-7 log CFU/g 수준으로 접종하고 65, 70, 75, 80℃로 건열처리 한 후, 발아율을 확인하였다. 알팔파 종자의 발아율은 시장에 유통되고 있는 알팔파 새싹의 발아율 기준인 70%로 설정하였다. 알팔파 종자에서 B. cereus는 65℃에서 21일, 70℃에서 18일, 75℃에서 14일, 80℃에서 4일, Listeria monocytogenes는 65℃에서 21일, 70℃에서 18일, 75℃에서 12일, 80℃에서 7일, S. aureus는 65℃에서 18일, 70℃에서 18일, 75℃에서 11일, 80℃에서 4일, E. coli O157:H7은 65℃에서 21일, 70℃에서 18일, 75℃에서 12일, 80℃에서 6일, Sal. Typhimurium은 65℃에서 24일, 70℃에서 22일, 75℃에서 14일, 80℃에서 7일 이상 건열처리 하였을 때 완전히 불활성화 되었다. 모든 균주는 65℃에서 80℃로 온도가 상승할 때 특정 온도에서 세균의 90%를 죽이는 데 필요한 시간인 D-값(R2=0.5656-0.7957)이 유의미하게 감소하였다(P<0.05). 80℃에서 7일간 건열처리 하였을 때 발아율이 70% 미만으로 감소하였기 때문에 75℃에서 14일간 건열처리 하는 것이 알팔파 종자의 안전성을 확보하는데 있어 가장 효과적인 방법이다. 이 연구는 알팔파 종자의 안전성을 확보하고 일정한 품질의 새싹을 생산하는데 기초자료로 이용될 것으로 기대된다.

Keywords

References

  1. Kim D.S., Lee K.B., Physiological characteristics and manufacturing of the processing products of sprouts vegetables. Korean J. Food Cook Sci., 26, 238-245 (2010).
  2. Fordham, J.R., Sprouting of seeds and nutrient composition of seeds and sprouts. J. Food Sci., 40, 552-556 (1975). https://doi.org/10.1111/j.1365-2621.1975.tb12526.x
  3. Price, T.V., Seed sprout production for human consumption-a review. Can. Inst. Food Technol. J., 21, 57-65 (1988). https://doi.org/10.1016/S0315-5463(88)70718-X
  4. Marton, M., Mandoki, Z.S., Csapo-Kiss, Z.S., Csapo, J., The role of sprouts in human nutrition. A review. Acta Univ. Sapientiae., 3, 81-117 (2010).
  5. Fu, T., Stewart, D., Reineke, K., Ulaszek, J., Schlesser, J., Tortorello, M., Use of spent irrigation water for microbiological analysis of alfalfa sprouts. J. Food Prot., 64, 802-806 (2001). https://doi.org/10.4315/0362-028X-64.6.802
  6. Lee, K.S., Park, G.S., Studies in the consumption and preference for sprout vegetables. J. East Asian Soc. Diet. Life., 12, 896-905 (2014).
  7. Choe, U., Yu, L.L., Wang, T.T., The science behind micro-greens as an exciting new food for the 21st century. J. Agric. Food Chem., 66, 11519-11530 (2018). https://doi.org/10.1021/acs.jafc.8b03096
  8. Jun, S.Y., Decontamination of Listeria monocytogenes-Inoculated seed sprouts and development of a food safety HACCP plan. PhD thesis, Kyungbook University. Daegu, Korea (2011).
  9. Waje, C., Kwon J.H., Improving the food safety of seed sprouts through irradiation treatment. Food Sci. Biotechnol., 16, 171-176 (2007).
  10. Callejon, R.M., Rodriguez-Naranjo, M.I., Ubeda, C., Hornedo-Ortega, R., Garcia-Parrilla, M.C., Troncoso, A.M., Reported foodborne outbreaks due to fresh produce in the united states and European Union: Trends and causes. Foodborne Pathog. Dis., 12, 32-38 (2015). https://doi.org/10.1089/fpd.2014.1821
  11. Miyahira, R.F., Antunes, A.E.C. Bacteriological safety of sprouts: A brief review. Int. J of Food Microbiol., 352, 109266 (2021).
  12. Kang, T.M., Cho, S.K., Park, J.Y., Song, K.B., Chung, M.S., Park, J.H., Analysis of microbial contamination of sprouts and fresh-cut salads in a market. Korean J. Food Sci. Technol., 43, 490-494 (2011). https://doi.org/10.9721/KJFST.2011.43.4.490
  13. Jo, M.J., Jeong, A.R., Kim, H.,J., Lee, N.R., Oh, S.W., Kim, Y.J., Chun, H.S., Koo. M.S., Microbiological quality of fresh-cut produce and organic vegetables. Korean J. Food Sci. Technol., 43, 91-97 (2011). https://doi.org/10.9721/KJFST.2011.43.1.091
  14. Jun, S.Y., Lee, Y.K., Effects of heat treatments on the microbial reduction and germination rates of red radish sprout seeds (Raphanus sativus). Korean J. Food Preserv., 21, 544-548 (2014). https://doi.org/10.11002/kjfp.2014.21.4.544
  15. Yang, Y., Meier, F., Lo, J.A., Yuan, W., Sze, V.L.P., Chung, H.J., Yuk, H.G., Overview of recent events in the microbiological safety of sprouts and new intervention technologies. Comr. Rev. Food Sci. Food Saf., 12, 265-280 (2013). https://doi.org/10.1111/1541-4337.12010
  16. National Advisory Committee on Microbiological Criteria for Foods, Microbiological safety evaluations and recommendations on sprouted seeds. Int. J. Food Microbiol., 52, 123-153 (1999). https://doi.org/10.1016/S0168-1605(99)00135-X
  17. Feng, G., Churey, J.J., Worobo, R.W., Thermal inactivation of Salmonella and Escherichia coli O157:H7 on alfalfa seeds. J. Food Prot., 70, 1698-1703 (2007). https://doi.org/10.4315/0362-028X-70.7.1698
  18. Neetoo, H., Chen, H., Individual and combined application of dry heat with high hydrostatic pressure to inactivate Salmonella and Escherichia coli O157:H7 on alfalfa seeds. Food Microbiol., 28, 119-127 (2011). https://doi.org/10.1016/j.fm.2010.09.004
  19. Hong, E.J., Kang, D.H., Effect of sequential dry heat and hydrogen peroxide treatment on inactivation of Salmonella Typhimurium on alfalfa seeds and seeds germination. Food Microbiol., 53, 9-14 (2016). https://doi.org/10.1016/j.fm.2015.08.002
  20. Jun, S.Y., Lee, Y.K., Effects of heat treatments on the microbial reduction and germination rates of red radish sprout seeds (Raphanus sativus). Korean J. Food Preserv., 21, 544-548 (2014). https://doi.org/10.11002/kjfp.2014.21.4.544
  21. Bang, J.H., Kim, H,Y., Kim, H.K., Beuchat, L.R., Ryu, J.H., Inactivation of Escherichia coli O157:H7 on radish seeds by sequential treatments with chlorine dioxide, drying, and dry heat without loss of seed viability. Appl. Environ. Microbiol., 77, 6680-6686 (2011). https://doi.org/10.1128/AEM.05715-11