• Title/Summary/Keyword: D Euler

Search Result 198, Processing Time 0.025 seconds

Static bending study of AFG nanobeam using local stress-and strain-driven nonlocal integral models

  • Yuan Tang;Hai Qing
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.265-272
    • /
    • 2024
  • In this paper, the problem of static bending of axially functionally graded (AFG) nanobeam is formulated with the local stress(Lσ)- and strain-driven(εD) two-phase local/nonlocal integral models (TPNIMs). The novelty of the present study aims to compare the size-effects of nonlocal integral models on bending deflections of AFG Euler-Bernoulli nano-beams. The integral relation between strain and nonlocal stress components based on two types nonlocal integral models is transformed unitedly and equivalently into differential form with constitutive boundary conditions. Purely LσD- and εD-NIMs would lead to ill-posed mathematical formulation, and Purely εD- and LσD-nonlocal differential models (NDM) may result in inconsistent size-dependent bending responses. The general differential quadrature method is applied to obtain the numerical results for bending deflection and moment of AFG nanobeam subjected to different boundary and loading conditions. The influence of AFG index, nonlocal models, and nonlocal parameters on the bending deflections of AFG Euler-Bernoulli nanobeams is investigated numerically. A consistent softening effects can be obtained for both LσD- and εD-TPNIMs. The results from current work may provide useful guidelines for designing and optimizing AFG Euler-Bernoulli beam based nano instruments.

COMPARATIVE STUDY ON FLUX FUNCTIONS AND LIMITERS FOR THE EULER EQUATIONS (Euler 방정식의 유량함수(Flux Function)와 제한자(Limiter) 특성 비교 연구)

  • Chae, E.J.;Lee, S.
    • Journal of computational fluids engineering
    • /
    • v.12 no.1
    • /
    • pp.43-52
    • /
    • 2007
  • A comparative study on flux functions for the 2-dimensional Euler equations has been conducted. Explicit 4-stage Runge-Kutta method is used to integrate the equations. Flux functions used in the study are Steger-Warming's, van Leer's, Godunov's, Osher's(physical order and natural order), Roe's, HLLE, AUSM, AUSM+, AUSMPW+ and M-AUSMPW+. The performance of MUSCL limiters and MLP limiters in conjunction with flux functions are compared extensively for steady and unsteady problems.

STUDY ON FLUX FUNCTIONS FOR THE EULER EQUATIONS (Euler 방정식의 Flux Function 특성 비교 연구)

  • Chae, E.J.;Lee, S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.36-40
    • /
    • 2006
  • A comparative study on flux functions for the 2-dimensional Euler equations has been conducted. Explicit 4-stage Runge-Kutta method is used to integrate the equations. Flux functions used in the study are Steger-Warming's, van Leer's. Godunov's, Osher's(physical order and natural order), Roe's, HILE, AUSM, AUSM+ and AUSMPW+. The performance of MUSCL limiters and MLP limiters in conjunction with flux functions are compared extensively for steady and unsteady problems.

  • PDF

Linear and nonlinear vibrations of inhomogeneous Euler-Bernoulli beam

  • Bakalah, Ebrahim S.;Zaman, F.D.;Saleh, Khairul
    • Coupled systems mechanics
    • /
    • v.7 no.5
    • /
    • pp.635-647
    • /
    • 2018
  • Dynamic problems arising from the Euler-Bernoulli beam model with inhomogeneous elastic properties are considered. The method of Green's function and perturbation theory are employed to find the deflection in the beam correct to the first-order. Eigenvalue problems appearing from transverse vibrations of inhomogeneous beams in linear and nonlinear cases are also discussed.

GLOBAL EXISTENCE FOR A PARTIALLY LINEAR 3D EULER FLOW

  • Kim, Namkwon;Lkhagvasuren, Bataa
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.211-224
    • /
    • 2018
  • We consider a certain three dimensional Euler flow with infinite energy, which is sometimes called the columnar or two and half dimensional flow. We prove the global smoothness of such flow in ${\mathbb{R}}^3$ when the initial data is in some Sobolev or Besov spaces and ${\partial}_3u_3$ is nonnegative.

CRITERION FOR BLOW-UP IN THE EULER EQUATIONS VIA CERTAIN PHYSICAL QUANTITIES

  • Kim, Namkwon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.4
    • /
    • pp.243-248
    • /
    • 2012
  • We consider the (possible) finite time blow-up of the smooth solutions of the 3D incompressible Euler equations in a smooth domain or in $R^3$. We derive blow-up criteria in terms of $L^{\infty}$ of the partial component of Hessian of the pressure together with partial component of the vorticity.

The Study on Camera Control for Improvement of Gimbal Lock in Digital-Twin Environment (디지털 트윈 환경에서의 짐벌락 개선을 위한 카메라 제어방법에 대한 연구)

  • Kim, Kyoung-Tae;Kim, Young-Chan;Cho, In-Pyo;Lee, Sang-Yub
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.476-477
    • /
    • 2022
  • This study deals with rotation, which is one of the expression methods of motion used in the 3D development environment. Euler angle is a rotation method introduced by Leonhard Euler to display objects in three-dimensional space. Although three angles can handle all rotations in a three dimensional coordinate space, there are serious errors in this approach. If you rotate an object with Euler angles, you will face the problem of gimbal locks that cannot rotate under certain circumstances. In contrast to this, the method to rotate an object without a gimbal lock is the quaternion rotation with quaternion. Rather than a detailed mathematical proof of quaternion, it introduces what concept is used in the current 3D development environment, and applies it to camera rotation control to implement a rotating camera without a gimbal lock.

  • PDF

Deterministic Nonlinear Control of Two-Link Flexible Arm (2관절 유연한 로봇 팔에 대한 비선형 제어)

  • Han, Jong-Kil;Son, Yong-Su
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.3
    • /
    • pp.236-242
    • /
    • 2009
  • When two-link flexible arm is rotated about an joint axis, transverse vibration may occur. In this paper, vibration dynamics of flexible robot arm is modeled by using Bernoulli-Euler beam theory and Lagrange equation. Using the fact that matrix $\dot{D}$-2C is skew symmetric, new controllers which have a simplified structure with less computational burden is proposed. Lyapunov stability theory is applied to achieve a stable deterministic nonlinear controller for the regulation of joint angle.

  • PDF

AN ALGORITHM FOR THE NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER

  • Odibat, Zaid M.;Momani, Shaher
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.15-27
    • /
    • 2008
  • We present and discuss an algorithm for the numerical solution of initial value problems of the form $D_*^\alpha$y(t) = f(t, y(t)), y(0) = y0, where $D_*^\alpha$y is the derivative of y of order $\alpha$ in the sense of Caputo and 0<${\alpha}{\leq}1$. The algorithm is based on the fractional Euler's method which can be seen as a generalization of the classical Euler's method. Numerical examples are given and the results show that the present algorithm is very effective and convenient.

  • PDF

On the artificially-upstream flux splitting method

  • Sun M.;Takayama K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.156-157
    • /
    • 2003
  • A simple method is proposed to split the flux vector of the Euler equations by introducing two artificial wave speeds. The direction of wave propagation can be adjusted by these two wave speeds. This idea greatly simplifies the upwinding, and leads to a new family of upwind schemes. Numerical flux function for multi-dimensional Euler equations is formulated for any grid system, structured or unstructured. A remarkable simplicity of the scheme is that it successfully achieves one-sided approximation for all waves without recourse to any matrix operation. Moreover, its accuracy is comparable with the exact Riemann solver. For 1-D Euler equations, the scheme actually surpasses the exact solver in avoiding expansion shocks without any additional entropy fix. The scheme can exactly resolve stationary contact discontinuities, and it is also freed of the carbuncle problem in multi­dimensional computations.

  • PDF