• Title/Summary/Keyword: D Euler

Search Result 196, Processing Time 0.021 seconds

Steady and Unsteady flows with Pressure-based Unstructured-grid Navier-Stokes Solver PUNS (비정렬격자 압력기준 유동해석기법을 이용한 정상 및 비정상 유동해석)

  • Kim Jongtae
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.98-105
    • /
    • 1999
  • The Pressure-based Unstructured-grid Navier-Stokes Solver PUNS-2/3D for incompressible steady and unsteady viscous flows has been developed. It is based on nonstaggered cell-centered finite volume method. Second-order upwind scheme with least-square reconstruction is used for convective fluxes. The SIMPLE method is implemented to couple the pressure and velocity fields. And the time derivatives in the momentum equations are discretised using a second-order Euler backward-differencing scheme. The discretised linear equations are solved by the preconditioned Biconjugate Gradient Stabilized method(Bi-CGSTAB). The developed solver is applied to validation problems using hybrid meshes.

  • PDF

Turbulent Flow Calculations Using an Unstructured Hybrid Meshes (2차원 혼합격자를 이용한 난류유동 계산)

  • Kim J. S.;Oh W. S.;Kwon O. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.90-97
    • /
    • 1999
  • An implicit turbulent flow solver is developed for 2-D unstructured hybrid meshes. Spatial discretization is accomplished by a cell-centered finite volume formulation using an upwind flux differencing. Time is advanced by an implicit backward Euler time stepping scheme. Flow turbulence effects are modeled by the Spalart-Allmaras one equation model, which is coupled with wall function. The numerical method is applied for flows on a flat plate, the NACA 0012 airfoil, and the Douglas 3 element airfoil. The results are compared with experimental data.

  • PDF

Plastic analysis of steel arches and framed structures with various cross sections

  • Silva, Jessica L.;Deus, Lidiane R.R.M.;Lemes, Igor J.M.;Silveira, Ricardo A.M.
    • Steel and Composite Structures
    • /
    • v.38 no.3
    • /
    • pp.257-270
    • /
    • 2021
  • This paper presents a displacement-based numerical methodology following the Euler-Bernoulli theory to simulate the 2 nonlinear behavior of steel structures. It is worth emphasizing the adoption of co-rotational finite element formulations considering large displacements and rotations and an inelastic material behavior. The numerical procedures proposed considers plasticity concentrated at the finite elements nodes, and the simulation of the steel nonlinear behavior is approached via the Strain Compatibility Method (SCM), where the material constitutive relation is used explicitly. The SCM is also applied in determining the sections bearing capacity. Moreover, the present numerical approach is not limited to a specific structural member cross-sectional typology, with the residual stress models introduced explicitly in subareas of steel cross-sections generated by a 2D discretization. Finally, results consistent with the literature and with low processing time are presented.

Time-dependent simplified spherical harmonics formulations for a nuclear reactor system

  • Carreno, A.;Vidal-Ferrandiz, A.;Ginestar, D.;Verdu, G.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3861-3878
    • /
    • 2021
  • The steady-state simplified spherical harmonics equations (SPN equations) are a higher order approximation to the neutron transport equations than the neutron diffusion equation that also have reasonable computational demands. This work extends these results for the analysis of transients by comparing of two formulations of time-dependent SPN equations considering different treatments for the time derivatives of the field moments. The first is the full system of equations and the second is a diffusive approximation of these equations that neglects the time derivatives of the odd moments. The spatial discretization of these methodologies is made by using a high order finite element method. For the time discretization, a semi-implicit Euler method is used. Numerical results show that the diffusive formulation for the time-dependent simplified spherical harmonics equations does not present a relevant loss of accuracy while being more computationally efficient than the full system.

Nonlinear dynamic responses of cracked atomic force microscopes

  • Alimoradzadeh, M.;Akbas, S.D.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.6
    • /
    • pp.747-756
    • /
    • 2022
  • This study presents the nonlinear free and forced vibrations of a cracked atomic force microscopy (AFM) cantilever by using the modified couple stress. The cracked section of the AFM cantilever is considered and modeled as rotational spring. In the frame work of Euler-Bernoulli beam theory, Von-Karman type of geometric nonlinear equation and the modified couple stress theory, the nonlinear equation of motion for the cracked AFM is derived by Hamilton's principle and then discretized by using the Galerkin's method. The semi-inverse method is utilized for analysis nonlinear free oscillation of the system. Then the method of multiple scale is employed to investigate primary resonance of the system. Some numerical examples are presented to illustrate the effects of some parameters such as depth of the crack, length scale parameter, Tip-Mass, the magnitude and the location of the external excitation force on the nonlinear free and forced vibration behavior of the system.

Hydrodynamic characteristics of a fixed semi-submersible platform interacting with incident waves by fully nonlinear method

  • Zhang, Zi-Lin;Yuan, Hong-Tao;Sun, Shi-Li;Ren, Hui-Long
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.526-544
    • /
    • 2021
  • Based on the potential flow theory, a fully nonlinear numerical procedure is developed with boundary element method to analyze the interaction between a fixed semi-submersible platform and incident waves in open water. The incident wave is separated from the scattered wave under fully nonlinear boundary conditions. The mixed Euler-Lagrangian method is used to capture the position of the disturbed wave surface in local coordinate systems. The wave forces exerted on an inverted conical frustum are used to ensure the accuracy of the present method and good agreements with published results are obtained. The hydrodynamic characteristics of the semi-submersible platform interacting with regular waves are analyzed. Pressure distribution with time and space, tension and compression of the platform under wave action are investigated. 3D behaviors of wave run-ups are predicted. Strong nonlinear phenomena such as wave upwelling and wave interference are observed and analyzed.

Thermal nonlinear dynamic and stability of carbon nanotube-reinforced composite beams

  • M. Alimoradzadeh;S.D. Akbas
    • Steel and Composite Structures
    • /
    • v.46 no.5
    • /
    • pp.637-647
    • /
    • 2023
  • Nonlinear free vibration and stability responses of a carbon nanotube reinforced composite beam under temperature rising are investigated in this paper. The material of the beam is considered as a polymeric matrix by reinforced the single-walled carbon nanotubes according to different distributions with temperature-dependent physical properties. With using the Hamilton's principle, the governing nonlinear partial differential equation is derived based on the Euler-Bernoulli beam theory. In the nonlinear kinematic assumption, the Von Kármán nonlinearity is used. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The critical buckling temperatures, the nonlinear natural frequencies and the nonlinear free response of the system is obtained. The effect of different patterns of reinforcement on the critical buckling temperature, nonlinear natural frequency, nonlinear free response and phase plane trajectory of the carbon nanotube reinforced composite beam investigated with temperature-dependent physical property.

GLOBAL VORTICITY EXISTENCE OF A PERFECT INCOMPRESSIBLE FLUID IN B0∞,1(ℝ2)∩Lp(ℝ2)

  • Pak, Hee Chul;Kwon, Eun-Jung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.271-277
    • /
    • 2010
  • We prove the global (in time) vorticity existence for the 2-D Euler equations of a perfect incompressible fluid in $B^0_{{\infty},1}({\mathbb{R}}^2){\cap}L^p({\mathbb{R}}^2)$ with 1 < p < 2. Moreover, we prove that the particle trajectory map X(x, t) satisfies the following estimate: for some positive constant C $${\parallel}X^{\pm1}(\cdot,\;t)-id(\cdot){\parallel}_{B^1_{\infty,1}}{\leq}Ce^{e^{Ct}}$$, where id represents the identity map on ${\mathbb{R}}^2$.

Nonlinear vibration analysis of carbon nanotube-reinforced composite beams resting on nonlinear viscoelastic foundation

  • M. Alimoradzadeh;S.D. Akbas
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.125-135
    • /
    • 2023
  • Nonlinear vibration analysis of composite beam reinforced by carbon nanotubes resting on the nonlinear viscoelastic foundation is investigated in this study. The material properties of the composite beam is considered as a polymeric matrix by reinforced carbon nanotubes according to different distributions. With using Hamilton's principle, the governing nonlinear partial differential equations are derived based on the Euler-Bernoulli beam theory. In the nonlinear kinematic assumption, the Von Kármán nonlinearity is used. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The nonlinear natural frequency and the nonlinear free response of the system is obtained. In addition, the effects of different patterns of reinforcement, linear and nonlinear damping coefficients of the viscoelastic foundation on the nonlinear vibration responses and phase trajectory of the carbon nanotube reinforced composite beam are investigated.

Nonlinear free vibration analysis of a composite beam reinforced by carbon nanotubes

  • M., Alimoradzadeh;S.D., Akbas
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.335-344
    • /
    • 2023
  • This investigation presents nonlinear free vibration of a carbon nanotube reinforced composite beam based on the Von Kármán nonlinearity and the Euler-Bernoulli beam theory The material properties of the structure is considered as made of a polymeric matrix by reinforced carbon nanotubes according to different material distributions. The governing equations of the nonlinear vibration problem is delivered by using Hamilton's principle and the Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The nonlinear natural frequency and the nonlinear free response of the system is obtained with the effect of different patterns of reinforcement.