Browse > Article
http://dx.doi.org/10.12989/scs.2021.38.3.257

Plastic analysis of steel arches and framed structures with various cross sections  

Silva, Jessica L. (Department of Civil Engineering, Federal University of Ouro Preto, Campus Universitario)
Deus, Lidiane R.R.M. (Department of Civil Engineering, Federal University of Ouro Preto, Campus Universitario)
Lemes, Igor J.M. (Department of Engineering, Federal University of Lavras, Campus Universitario)
Silveira, Ricardo A.M. (Department of Civil Engineering, Federal University of Ouro Preto, Campus Universitario)
Publication Information
Steel and Composite Structures / v.38, no.3, 2021 , pp. 257-270 More about this Journal
Abstract
This paper presents a displacement-based numerical methodology following the Euler-Bernoulli theory to simulate the 2 nonlinear behavior of steel structures. It is worth emphasizing the adoption of co-rotational finite element formulations considering large displacements and rotations and an inelastic material behavior. The numerical procedures proposed considers plasticity concentrated at the finite elements nodes, and the simulation of the steel nonlinear behavior is approached via the Strain Compatibility Method (SCM), where the material constitutive relation is used explicitly. The SCM is also applied in determining the sections bearing capacity. Moreover, the present numerical approach is not limited to a specific structural member cross-sectional typology, with the residual stress models introduced explicitly in subareas of steel cross-sections generated by a 2D discretization. Finally, results consistent with the literature and with low processing time are presented.
Keywords
co-rotational approach; concentrated plasticity; SCM; various steel sections;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ngo-Huu, C. and Kim, S.E., (2012), "Practical non- linear analysis of steel-concrete composite frames using fiber-hinge method", J. Constr. Steel Res., 74, 90-97. https://doi.org/10.1016/j.jcsr.2012.02.018.   DOI
2 Pi, Y.L. and Trahair, N.S. (1996), "In-plane inelastic buckling and strengths of steel arches", J. Struct. Eng., 122, 734-747. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:7(734).   DOI
3 Scott, M.H. and Fenves, G.L. (2006), "Plastic-hinge integration methods for forced-based beam-column elements", J. Struct. Eng., 132(2), 244-252. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:2(244).   DOI
4 Sfakianakis, M.G. (2002), "Biaxial bending with axial force of reinforced, composite and repaired concrete section of arbitrary shape by fiber model and computer graphics", Adv. Eng. Software, 33(4), 227-242. https://doi.org/10.1016/S0965-9978(02)00002-9.   DOI
5 Tang, Y.Q., Zhou, Z.H. and Chan, S.L. (2015), "Nonlinear beam-column element under consistent deformation", Int. J. Struct. Stab. Dynam., 15(5), 1450068. https://doi.org/10.1142/S0219455414500680.   DOI
6 .Vogel, U. (1985), "Calibrating frames", Stahlbau, 54, 295-311.
7 Yabuki, T., Vinnakota, S. and Kuranishi, S. (1986), "Fixed-end restraint effect on steel arch strength", J. Struct. Eng., 112, 653-664. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:4(653).   DOI
8 Wang, Y.B., Li G.Q., Chen, S.W. and Sun, F.F. (2014), "Experimental and numerical study on the behavior of axially compressed high steel box-columns", Eng. Struct., 58, 79-91. https://doi.org/10.1016/j.engstruct.2013.10.013.   DOI
9 Ziemian, R.D. (1993), "Examples of frame studies used to verify advanced methods of inelastic analysis", In: Plastic Hinge Based Methods for Advanced Analysis and Design of Steel Frames. Structural Stability Research Council, SSRC, Lehigh Univ., Bethlehem, PA.
10 Ziemian, R.D. and McGuire, W. (2002), "Modified tangent modulus approach, a contribution to plastic hinge analysis", J. Struct. Eng., 128, 1301-1307. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:10(1301).   DOI
11 Ziemian, R.D. and Miller, A.R. (1997), "Inelastic analysis and design: frames with members in minor-axis bending", J. Struct. Eng., 123(2), 151-156. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:2(151).   DOI
12 Zubydan, A.H. (2011), "Inelastic second order analysis of steel frame elements exed about minor axis", Eng. Struct., 33, 1240-1250. https://doi.org/10.1016/j.engstruct.2010.12.046.   DOI
13 Zubydan, A.H. (2013), "Inelastic large deflection analysis of space steel frames including H-shaped cross-sectional members", Eng. Struct., 48, 155-165. https://doi.org/10.1016/j.engstruct.2012.09.024.   DOI
14 Chiorean, C.G. (2013), "A computer method for nonlinear inelastic analysis of 3D composite steel-concrete frame structures", Eng. Struct., 57, 125-152. https://doi.org/10.1016/j.engstruct.2013.09.025.   DOI
15 Crisfield, M.A. (1991), "Non-linear finite element analysis of solids and structures", Wiley, 1.
16 Dimopoulos, C.A. and Gantes, C.J. (2008), "Design of circular steel arches with hollow circular cross-sections according to EC3", J. Constr. Steel Res., 64, 1077-1085. https://doi.org/10.1016/j.jcsr.2007.09.009.   DOI
17 Du, Z.L. Liu, Y.P. and Chan, S.L. (2018), "A force-based element for direct analysis using stress-resultant plasticity model", Steel Compos. Struct., 29(2), 175-186. https://doi.org/10.12989/scs.2018.29.2.175.   DOI
18 ECCS (1983), Ultimate limit state calculation of sway frames with rigid joints, pub. no. 33, European Convention for Constructional Steelwork.
19 Eurocode 3 (2004), Design of steel structures. Part 1-1: General rules and rules for buildings, prEN 1993-1-1.
20 Guo, Z., Wang, Y., Lu, N., Zhang, H. and Zhu, F. (2016), "Behaviour of a two-pinned steel arch at elevated temperatures", Thin-Wall. Struct., 107, 248-256. https://doi.org/10.1016/j.tws.2016.06.015.   DOI
21 Kaminski, M.M. and Swita, P. (2011), "Generalized stochastic finite element method in elastic stability problems", Comput. Struct., 89, 1241-1252. https://doi.org/10.1016/j.compstruc.2010.08.009.   DOI
22 Kitipornchai, S., Al-Bermani, F.G.A. and Chan, S.L. (1988), "Geometric and material nonlinear analysis of structures comprising rectangular hollow sections", Eng. Struct., 10(1), 13-23. https://doi.org/10.1016/0141-0296(88)90012-0.   DOI
23 Lemes, I.J.M., Silveira, R.A.M., Silva, A.R.D. and Rocha, P.A.S. (2017), "Nonlinear analysis of two-dimensional steel, reinforced concrete and composite steel-concrete structures via coupling SCM/RPHM", Eng. Struct., 147, 12-26. https://doi.org/10.1016/j.engstruct.2017.05.042.   DOI
24 Li, T.J., Liu, S.W. and Chan, S.L. (2015a), "Cross-sectional analysis of arbitrary sections allowing for residual stresses", Steel Compos. Struct., 18(4), 985-1000. https://doi.org/10.12989/scs.2015.18.4.985   DOI
25 Li, T.J., Liu, S.W. and Chan, S.L. (2015b), "Direct analysis for high-strength steel frames with explicit model of residual stresses", Eng. Struct., 100, 342-355. https://doi.org/10.1016/j.engstruct.2015.06.008   DOI
26 Liu, S.W., Ziemian, R.D., Chen, L. and Chan, S. L. (2018), "Bifurcation and large-deflection analyses of thin-walled beam-columns with non-symmetric open-sections", Thin-Wall. Struct., 132, 287-301. https://doi.org/10.1016/j.tws.2018.07.044   DOI
27 Mathur, K. (2011), "Effects of residual stresses and initial imperfections on Earthquake response of steel moment frames", Ph.D. dissertation, Graduate College of the University of Illinois Urbana-Champaign, Illinois, United States of America.
28 Iffland, J.S.B. and Birnstiel, C. (1982), "Stability design procedures for building frameworks", AISC Proj. No. 21.62, AISC, Chicago, Ill.
29 Bouras, Y. and Vrcelj, Z. (2019), "Thermal in-plane stability of concrete-filled steel tubular arches", Int. J. Mech. Sci., 163, 105130. https://doi.org/10.1016/j.ijmecsci.2019.105130.   DOI
30 Chan, S.L. (1988), "Geometric material non-linear analysis of beam-columns and frames using the minimum residual displacement method", Int. J. Numer. Method. Eng., 26, 2657- 2669. https://doi.org/   DOI
31 Chan, S.L. and Chui, P. (2000), Non-linear static and cyclic analysis of steel frames with semi-rigid connections, Oxford, Elsevier.
32 Chen, L., Liu, S.W. and Chan, S.L. (2017), "Divergence-free algorithms for moment-thrust-curvature analysis of arbitrary sections", Steel Compos. Struct., 25(5), 557-569. https://doi.org/10.12989/scs.2017.25.5.557.   DOI
33 Chen, W.F. and Kim, S.E. (1997), LRFD steel design using advanced analysis, CRC Press, Boca Raton, Florida, United States of America.
34 Chen, W.F. and Toma, E. (1994), Advanced analysis of steel frames, CRC Press, Boca Raton, Florida, United States of America.
35 Chen, S., Teng, J.G. and Chan, S.L. (2001), "Design of biaxially loaded short composite columns of arbitrary section", J. Struct. Eng., 127(6), 678-685. https://doi.org/10.1061/(ASCE)0733- 9445(2001)127:6(678).   DOI
36 Alhasawi, A., Heng, P., Hjiaj, M., Guezouli, S. and Battini, J.M. (2017), "Co-rotational planar beam element with generalized elasto-plastic hinges", Eng. Struct., 151, 188-205. https://doi.org/10.1016/10.1016/j.engstruct.2017.07.085.   DOI
37 Chhang, S., Battini, J.M. and Hjiaj, M. (2017), "Energy-momentum method for co-rotational plane beams: A comparative study of shear flexible formulations", Finite Elemen. Anal. Des., 134, 41-54. https://doi.org/10.1016/j._nel.2017.04.001.   DOI