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GLOBAL VORTICITY EXISTENCE OF A PERFECT
INCOMPRESSIBLE FLUID IN B0

∞,1(R2) ∩ Lp(R2)

Hee Chul Pak* and Eun-Jung Kwon**

Abstract. We prove the global (in time) vorticity existence for the
2-D Euler equations of a perfect incompressible fluid in B0

∞,1(R2)∩
Lp(R2) with 1 < p < 2. Moreover, we prove that the particle
trajectory map X(x, t) satisfies the following estimate: for some
positive constant C

‖X±1( ·, t)− id(·)‖
B1∞,1

≤ CeeCt

,

where id represents the identity map on R2.

1. Introduction

We consider the non-stationary Euler equations of a perfect incom-
pressible fluid:

∂

∂t
u + (u,∇)u = −∇p,(1.1)

div u = 0,

where u(x, t) = (u1, u2, · · · , un) represents the velocity of a fluid flow,
and p(x, t) is the scalar pressure. The vorticity ω is the curl of the
velocity vector field u: ω = curl u. For example, 3-D vorticity is ω =
( ∂

∂x2
u3 − ∂

∂x3
u2,

∂
∂x3

u1 − ∂
∂x1

u3,
∂

∂x1
u2 − ∂

∂x2
u1) and 2-D vorticity is the

scalar function ω = ∂u2
∂x1

− ∂u1
∂x2

.
In [6], Pak and Park investigated local existence of the solution to the

3-D Euler equation (1.1) and proved that the vorticity ω stays locally
in B0

∞,1(R3)∩Lp(R3) if the initial vorticity ω0 is in B0
∞,1(R3)∩Lp(R3).

In this paper, we prove the global unique vorticity existence for the
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2-dimensional Euler equations in the space B0
∞,1(R2) ∩ Lp(R2). The

following is our main result.

Theorem 1.1. Let 1 < p < 2. For every initial vorticity ω0 ∈
B0
∞,1(R2) ∩ Lp(R2) with ω0 = curlu0 for some divergence free vec-

tor field (of distribution) u0, there exists a unique vorticity ω(x, t) ∈
C([0,∞);B0

∞,1(R2) ∩ Lp(R2)) of the initial value problem for the Euler

equation (1.1) with ω(x, 0) = ω0(x). Moreover, the solution satisfies the
following estimate:

‖ω(t)‖
B0∞,1∩Lp

≤ C ‖ω0‖
B0∞,1∩Lp

exp
(
C‖ω0‖B0

∞,1∩Lp t
)

,

for some positive constant C.

We point out that the B0
∞,1-norm of solution has an exponential

upper bound - not exponential of exponential.
Corresponding to the Euler equations, we have a system of ordinary

differential equations
{

∂

∂t
X(x, t) = u(X(x, t), t),
X(x, 0) = x,

which defines particle trajectories X(x, t) subject to the Euler flow u(x, t),
starting from initial positions x. It has been emphasized to observe the
behavior of particle trajectories for studying regularity problem of the
Euler flow(this is, what we call, the Yudovich’s observation). Concerning
the particle trajectories, we have the following theorem:

Theorem 1.2. Let u0 be a divergence free vector field with ω0 =
curlu0 ∈ B0

∞,1(R2) ∩ Lp(R2), 1 < p < 2, and let X(x, t) be the particle
trajectory map subject to the velocity u, where ω = curl u is the unique
vorticity ω of the initial value problem for the Euler equation (1.1) with
ω(x, 0) = ω0(x). Then the particle trajectory map X(x, t) satisfies the
estimate: for some positive constant C,

‖X±1( ·, t)− id(·)‖
B1∞,1

≤ CeeCt
,

where id represents the identity map on R2.

Because the local existence of 2-D vorticity is essentially proved in
[6], in this paper, we focus only on the persistence of the 2-D vorticity
in B0

∞,1(R2) ∩ Lp(R2). For the proof of global existence we borrow the
techniques in [8, 3], especially the limiting case of Beale-Kato-Majda
inequality in 2-D which was originally proved by M. Vishik. The proof
of Theorem 1.2 heavily relies on the estimates introduced in [6].



2-D global vorticity existence of a perfect incompressible fluid 273

2. Preliminaries

Let S be the Schwartz class of rapidly decreasing functions. We
consider a nonnegative radial function χ ∈ S satisfying supp χ ⊂ {ξ ∈
Rn : |ξ| ≤ 5

6}, and χ = 1 for |ξ| ≤ 3
5 . Set hj(ξ) := χ(2−j−1ξ)− χ(2−jξ),

and we notice that

χ(ξ) +
∞∑

j=0

hj(ξ) = 1, for ξ ∈ Rn.

Let ϕj and Φ be defined by ϕj := F−1(hj), j ≥ 0 and Φ := F−1(χ),
where Fu = û denotes the Fourier transform of u on Rn. Note that ϕj is
a mollifier of ϕ0, that is, ϕj(x) := 2jnϕ0(2jx) (or ϕ̂j(ξ) = ϕ̂(2−jξ)). For
f ∈ S ′, we denote ∆jf ≡ hj(D)f = ϕj ∗ f if j ≥ 0, ∆jf = 0 if j ≤ −2,
and ∆−1f ≡ χ(D)f = Φ ∗ f if j = −1. We also define the partial sums:
Skf :=

∑k
j=−1 ∆jf for k ∈ Z. For s ∈ R, the Besov spaces Bs

∞,1(Rn)
are defined by

Bs
∞,1(Rn) =



f :

∞∑

j=−1

2js‖∆jf‖Lp < ∞


 .

We state a collection of a-priori estimates which is used in the proof
of the main theorem. Those a-priori estimates are discussed in arbitrary
dimension n ≥ 2 including the cases of the dimension 2 and 3.

Remark 2.1. Let ω = curl u. Then we have

‖u‖B1
∞,1

≤ C
(
‖ω‖B0

∞,1
+ ‖ω‖Lp

)
:= ‖ω‖B0

∞,1∩Lp .

The proof can be found in [6].

By virtue of Bony’s para-product formula, we have the following use-
ful estimate.

Remark 2.2. For any differentiable divergence free vector field u and
any differentiable vector field h, we have:

∞∑

j=−1

2j ‖(Sj−2u,∇)∆jh−∆j((u,∇)h)‖L∞ ≤ C‖u‖B1
∞,1
‖h‖B1

∞,1
.(2.1)

For the proof, we refer Proposition 6 at page 1157 in [5].
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3. The proofs

Let 1 < p < 2, and we are given initial vorticity ω|t=0 = ω0 ∈
B0
∞,1(R2) ∩ Lp(R2) with ω0 = curlu0 for some divergence free vector

field (of distribution) u0. The 2-D vorticity equation is given by

∂

∂t
ω + (u,∇)ω = 0.(3.1)

In the following discussion, {X(x, t)} represents the trajectory flow
along u defined by the solution of

{
∂

∂t
X(x, t) = u(X(x, t), t),
X(x, 0) = x.

(3.2)

It is well-known that the solution ω(x, t) of the 2-D vorticity equation
can be represented by

ω(x, t) = ω0(X−1(x, t)), x ∈ R2.

3.1. The proof of Theorem 1

We introduce the limiting case of Beale-Kato-Majda inequality in 2-D
which was originally proved by M. Vishik [8].

Remark 3.1 (Logarithmic B-K-M inequality). We have the following
estimate:

‖ω(t)‖B0
∞,1

≤ C
(
1+log(‖∇xX(·, t)‖L∞‖∇xX−1(·, t)‖L∞)

)‖ω0‖B0
∞,1

.

Vishik’s inequality(Remark 3.1) explains the exponential growth of
B0
∞,1-norm of vorticity ω(t) as follows. The identity (from (3.2))

∂

∂t
∇xX(x, t) = (∇u)(X(x, t), t) · ∇xX(x, t)

implies

‖∇xX(·, t)‖L∞ ≤ 1 +
∫ t

0
‖∇u(X(·, τ), τ)‖L∞‖∇xX(·, τ)‖L∞ dτ.
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Also, Gronwall’s inequality, Remark 2.1, Vishik’s inequality and the
conservation of vorticity, ‖ω(·, τ)‖Lp = ‖ω0‖Lp , imply that

‖∇xX(·, t)‖L∞

≤ exp
{∫ t

0
‖∇u(·, τ)‖L∞dτ

}

≤ exp
{

C

∫ t

0
(‖ω(·, τ)‖B0

∞,1
+ ‖ω(·, τ)‖Lp) dτ

}

≤ exp
{

C‖ω0‖B0
∞,1∩Lp

∫ t

0

(
1+log(‖∇xX(τ)‖L∞‖∇xX−1(τ)‖L∞)

)
dτ

}
.

Similarly, we have

‖∇xX−1(·, t)‖L∞

≤ exp
{

C‖ω0‖B0
∞,1∩Lp

∫ t

0

(
1+log(‖∇xX(τ)‖L∞‖∇xX−1(τ)‖L∞)

)
dτ

}
.

Combine these estimates together to get

‖∇xX(·, t)‖L∞ ‖∇xX−1(·, t)‖L∞

≤ exp
{

C‖ω0‖B0
∞,1∩Lp

∫ t

0

(
1 + log(‖∇xX(τ)‖L∞‖∇xX−1(τ)‖L∞)

)
dτ

}
.

Or

log(‖∇xX(·, t)‖L∞ ‖∇xX−1(·, t)‖L∞)

≤ C‖ω0‖B0
∞,1∩Lp

∫ t

0

(
1 + log(‖∇xX(·, τ)‖L∞‖∇xX−1(·, τ)‖L∞)

)
dτ.

Hence Gronwall’s inequality implies

log
(‖∇xX(·, t)‖L∞ ‖∇xX−1(·, t)‖L∞

) ≤ exp
(
C‖ω0‖B0

∞,1∩Lp t
)

.

Placing this into Remark 3.1, we have

‖ω(t)‖B0
∞,1

≤ C
(
1 + exp

(
C‖ω0‖B0

∞,1∩Lp t
))
‖ω0‖B0

∞,1

≤ C ‖ω0‖B0
∞,1

exp
(
C‖ω0‖B0

∞,1∩Lp t
)

.

Therefore the conservation of vorticity in 2-D, ‖ω(t)‖Lp = ‖ω0‖Lp , im-
plies the growth rate of vorticity in time:

‖ω(t)‖
B0∞,1∩Lp ≤ C ‖ω0‖

B0∞,1∩Lp exp
(
C‖ω0‖B0

∞,1∩Lp t
)

.

This completes the global existence of vorticity in B0
∞,1(R2) ∩ Lp(R2)

with 1 < p < 2.



276 Hee Chul Pak and Eun-Jung Kwon

3.2. The proof of Theorem 2

We present the estimate:

‖X±1( ·, t)− id(·)‖
B1∞,1

≤ CeeCt
,

and the estimate for∇X( ·, t) can be obtained similarly. We set h(x, t) :=
X−1(x, t)− x. Then we have h(x, 0) = 0, and

∂

∂t
h(x, t) = −(u,∇)h− u.(3.3)

(We referred the formula (6.13) in [8].) Take ∆j operator and add
(Sj−2u,∇)∆j h on both sides of (3.3) to have

∂

∂t
∆j h + (Sj−2u,∇)∆jh = (Sj−2u,∇)∆jh−∆j(u,∇)h−∆ju.

Then by considering the trajectory flow {Yj(x, t)} along Sj−2u defined
by the solution of the ordinary differential equations

{
∂

∂t
Yj(x, t) = (Sj−2u)(Yj(x, t), t),
Yj(x, 0) = x,

we get

‖∆j h(t)‖L∞ ≤
∫ t

0
‖(Sj−2u,∇)∆jh−∆j((u,∇)h)‖L∞ + ‖∆ju‖L∞ dτ.

Therefore multiplying 2j on both sides and summing up altogether, we
obtain:

‖h(t)‖B1
∞,1

≤
∫ t

0

∞∑

j=−1

2j ‖(Sj−2u,∇)∆jh−∆j((u,∇)h)‖L∞ dτ +
∫ t

0
‖u(τ)‖B1

∞,1
dτ.

From Remark 2.1, 2.2 and Theorem 1.1, we get

‖h(t)‖B1
∞,1

≤ CeCt + C

∫ t

0
eCt‖h(τ)‖B1

∞,1
dτ.(3.4)

By virtue of Gronwall’s inequality, we finally get

‖h(t)‖
B1∞,1

≤ CeeCt
.

This completes the proof.
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