• 제목/요약/키워드: D Euler

검색결과 198건 처리시간 0.022초

배기 소음기내를 전파하는 비정상 충격파의 수치해석 (Study of the Weak Shock Wave Propagating through an Exhaust Pipe Silencer System)

  • 권용훈;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.462-467
    • /
    • 2001
  • The present study addresses a computational work of the weak shock wave propagatings inside a silencer system of automobile exhaust pipe. Four different types of the silencer systems and the initial shock wave Mach number $M_s$ of $1.01\sim1.30$ are applied to investigate their effects on the noise reduction and the flow field in a silencer system. The results obtained from the present computational work are compared with the experimental results. The second order total variation diminishing (TVD) scheme is employed to solve the two dimensional, compressible, unsteady, Euler equations. The present computational results predict the experimental results with a quite good accuracy. Of the four silencer systems applied, the most desirable silencer system to reduce the peak pressure at the exit of the exhaust pipe is discussed.

  • PDF

Development of Viscous Boundary Conditions in an Immersed Cartesian Grid Framework

  • Lee, Jae-Doo
    • Journal of Ship and Ocean Technology
    • /
    • 제10권3호
    • /
    • pp.1-16
    • /
    • 2006
  • Despite the high cost of memory and CPU time required to resolve the boundary layer, a viscous unstructured grid solver has many advantages over a structured grid solver such as the convenience in automated grid generation and vortex capturing by solution adaption. In present study, an unstructured Cartesian grid solver is developed on the basis of the existing Euler solver, NASCART-GT. Instead of cut-cell approach, immersed boundary approach is applied with ghost cell boundary condition, which can be easily applied to a moving grid solver. The standard $k-{\varepsilon}$ model by Launder and Spalding is employed for the turbulence modeling, and a new wall function approach is devised for the unstructured Cartesian grid solver. Developed approach is validated and the efficiency of the developed boundary condition is tested in 2-D flow field around a flat plate, NACA0012 airfoil, and axisymmetric hemispheroid.

헤르쯔 접촉스프링과 레일 요철을 고려한 차량-교량 동적상호작용 비선형 해석 (Nonlinear Dynamic Analysis of Vehicle-Bridge Interaction considering the Hertzian Contact Spring and Rail Irregularities)

  • 강영종;웬판반;김정훈;강윤석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1478-1485
    • /
    • 2010
  • In this paper, the nonlinear dynamic response of Vehicle-Bridge interaction with the coupled equations of motion including nonlinear Hertzian contact is presented. The moving train model is chosen to have 10 degrees of freedom (DOF). The bridge is modeled as 2D Euler-Bernoulli beam element with 4 DOF for each element, two for rotations and another two for translations. The nonlinear Hertzian contact is used to simulate the interaction between vehicle and bridge. Base on the relationship of wheel displacement of the vehicle and the vertical displacement of the bridge in Hertzian contact, the coupled equations of motion of the whole system is derived. The convenient formulation was encoded into a computer program. The contact forces, contact area and stress of the rail surface were also computed. The accuracy and efficiency of the proposed program are verified and compared with exact analytical solution and other previous studies. Various numerical examples and parametric studies have demonstrated the versatility and applicability of the proposed program.

  • PDF

궤도차량을 위한 동특성 해석 프로그램 개발 (Development of a Dynamic Analysis Program for Tracked Vehicles)

  • 최윤상;이영신
    • 한국소음진동공학회논문집
    • /
    • 제12권1호
    • /
    • pp.29-35
    • /
    • 2002
  • A simulation program for vehicle dynamic analysis was developed. The Cartesisn coordinate system was used for translational motion and the Euler angle system was used for rotational motion. A three dimensional multi-wheeled vehicle model and equations of motion were derived. Also static equilibrium analysis was added for initial vehicle condition setting. The program user can describe the exact characteristics of suspension spring force and damping force in the user subroutine. A wheel-ground contact model which represents geometrical effect was developed. Two cases of simulation for 16 D.O.F. vehicle model were conducted to validate the developed program by comparing the simulation results with the experimental data.

비정렬 혼합 격자에서 내재적 방법을 이용한 비압축성 유동해석 (Implicit Incompressible flow solver on Unstructured Hybrid grids)

  • 김종태;김용모;맹주성
    • 한국전산유체공학회지
    • /
    • 제3권2호
    • /
    • pp.17-26
    • /
    • 1998
  • The three-dimensional incompressible Navier-Stokes equations have been solved by a node-centered finite volume method with unstructured hybrid grids. The pressure-velocity coupling is handled by the artificial compressibility algorithm and convective fluxes are obtained by Roe's flux difference splitting scheme with linear reconstruction of the solutions. Euler implicit method with Jacobi matrix solver is used for the time-integration. The viscous terms are discretised in a manner to handle any kind of grids such as tetragedra, prisms, pyramids, hexahedra, or mixed-element grid. Inviscid bump flow is solved to check the accuracy of high order convective flux discretisation. And viscous flows around a circular cylinder and a sphere are studied to show the efficiency and accuracy of the solver.

  • PDF

비정렬 격자계에서 내재적 불연속 갤러킨 기법의 개발 (DEVELOPMENT OF IMPLICIT DISCONTINUOUS GALERKIN METHOD ON UNSTRUCTURED MESHES)

  • 이희동;권오준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 춘계 학술대회논문집
    • /
    • pp.30-40
    • /
    • 2007
  • The implicit discontinuous Galerkin method for the two-dimensional Euler equations was developed on unstructured triangular meshes, which can achieve higher-order accuracy by wing hierachical basis functions based on Legendre polynomials. Numerical tests were conducted to estimate the convergence order of numerical solutions to the Ringleb flow and the supersonic vortex flow for which analytic solutions are available. And, the flows around a circle and a NACA0012 airfoil was also numerically simulated. Numerical results show that the implicit discontinuous Galerkin methods with higher-order representation of curved solid boundaries can be an efficient higher-order method to obtain very accurate numerical solutions on unstructured meshes.

  • PDF

오일러 방정식 및 저차모델링 기법을 활용한 천음속 플러터 해석 (Transonic Flutter Analysis Using Euler Equation and Reduced order Modeling Technique)

  • 김동현;김요한;김명환;류경중;황미현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.339-344
    • /
    • 2011
  • In the past much effort has been made to utilize advanced computational fluid dynamic (CFD) programs for aeroelastic simulations and analysis. However, it is limited in the field of unsteady aeroelasticity due to enormous size of computer memory and unreasonably long CPU time. Recently, AAEMS(Aerodynamics is Aeroelasticity minus Structure) was developed for linear time-invariant, coupled fluid-structure systems. In this paper, to demonstrate further the efficiency and accuracy of the new model reduction method, we successfully examine AGARD 445.6 wing modeled by FLUENT CFD, FSIPRO3D and NASTRAN FEM(Finite Element Method) programs. Using the ROM(Reduced Order Modeling) one can predict flutter boundary as a function of the dynamic pressure.

  • PDF

평면연삭에서의 잔류응력 분포에 관한 연구 (A study on residual stress distribution in surface grinding)

  • 김경년;정재천;김기선
    • 오토저널
    • /
    • 제13권6호
    • /
    • pp.109-118
    • /
    • 1991
  • In this study, it is intended to investigate the effect of the grinding conditions such as table feed, down feed, cross feed of residual stress distribution. And this distribution is investigated upon the grinding direction and the its orthogonal direction at ground layers. The material is used carbon steel (SM20C) which usually used to motor axis. And in order to be considered as Bernoulli-Euler beam, the dimension of the specimen is appropriately designed. According as corroiding the ground surface, the residual stress layers are removed and strain which occured on account of unbalance of internal stress is detected by rosette-gate. Through A/D converter and computer, these values are saved and evaluated residual stress by stress-strain relation formula. Finally, these results are diagrammatized with Auto Cad. The results obtained are as follows. As the depth from the ground surface increases in grinding direction and its orthogonal direction, tensile residual stress exists in the surface, and subsequently it becomes compressive residual stress as it goes downward. As the table feed, the cross feed and the down feed increase, maximum residual stress is transformed form the tensile to the compressive.

  • PDF

Quasi-steady State Simulation of Rotating Detonation Engine

  • Niyasdeen, Mohammed;Oh, Sejong;Kim, Kui Soon;Choi, Jeong-Yeol
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권4호
    • /
    • pp.548-559
    • /
    • 2015
  • We performed a numerical simulation based on the two-dimensional (2-D) unsteady Euler's equation with a single-step Arrhenius reaction model in order to investigate the detonation wave front propagation of an Argon (Ar) diluted oxy-hydrogen mixture ($2H_2+O_2+12Ar$). This simulation operates in the detonation frame of reference. We examine the effect of grid size and the performance impact of integrated quantities such as mass flow. For a given set of baseline conditions, the minimal and maximum grid resolutions required to simulate the respective detonation waves and the detonation cell structures are determined. Tertiary shock wave behavior for various grids and pre-exponential factors are analyzed. We found that particle fluctuation can be weakened by controlling the mass flow going through the oblique shock waves.

Geometrically Nonlinear Analysis of Eccentrically Stiffened Plates

  • Lee, Jae-Wook;Chung, Kie-Tae;Yang, Young-Tae
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • 제1권1호
    • /
    • pp.91-100
    • /
    • 1993
  • A displacement-based finite element method Is presented for the geometrically nonlinear analysis of eccentrically stiffened plates. A nonlinear degenerated shell element and a nonlinear degenerated eccentric isoparametric beam (isobeam) element are formulated on the basis of Total Agrangian and Updated Lagrangian descriptions. In the formulation of the isobeam element, some additional local decrees of freedom are implementd to describe the stiffener's local plate buckling modes. Therefore this element can be effectively employed to model the eccentric stiffener with fewer D.O.F's than the case of a degenerated shell element. Some detailed buckling and nonlinear analyses of an eccentrically stiffened plate are performed to estimate the critical buckling loads and the post buckling behaviors including the local plate buckling of the stiffeners discretized with the degenerated shell elements and the isobeam elements. The critical buckling loads are found to be higher than the analytical plate buckling load but lower than Euler buckling load of the corresponding column, i.e, buckling strength requirements of the Classification Societies for the stiffened plates.

  • PDF