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ABSTRACT

In the past much effort has been made to utilize advanced computational fluid dynamic (CFD) programs for 
aeroelastic simulations and analysis. However, it is limited in the field of unsteady aeroelasticity due to enormous 
size of computer memory and unreasonably long CPU time. Recently, AAEMS(Aerodynamics is Aeroelasticity minus 
Structure) was developed for linear time-invariant, coupled fluid-structure systems. In this paper, to demonstrate 
further the efficiency and accuracy of the new model reduction method, we successfully examine AGARD 445.6 wing 
modeled by FLUENT CFD, FSIPRO3D and NASTRAN FEM(Finite Element Method) programs. Using the 
ROM(Reduced Order Modeling) one can predict flutter boundary as a function of the dynamic pressure.  
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Fig. 1 Model reduction by spatial reduction 
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Fig. 2 Flow chart for the AAEMS system identification procedure 

Fig. 3 Comparison of CDMV and CMVD Method 



Table 1 Material properties of AGARD 445.6 wing 

Fig. 4 Geometric configuration of AGARD 445.6 wing 

Fig. 5 Finite element model of AGARD 445.6 wing 

(a) Mode 1 (1st bending, 9.61 Hz) 

(b) Mode 2 ( 1st torsion, 38.98 Hz) 

(c) Mode 3 (2nd bending, 48.96 Hz) 

(d) Mode 4 (2nd torsion, 93.50 Hz) 

Fig. 6 Natural frequency mode shape on FEM grid 

Fig. 7 FSI-PRO 3D System configuration. 
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(a) Computational domain grid 

(b) Computational surface grid 
Fig.8 Computational grid for AGARD 445.6 wing model 
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Fig.9 Eigenvalues of the aeroelastic ROM identified by ERA 

and AAEMS 

Fig.10 Eigenvalues of the aeroelastic ROM at two dynamic 

pressures (q=1.0, 1=1.38) 
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(a) 1st mode displacement 

(b) 1st mode velocity 

Fig.11 Aeroelastic response due to initial condition 

(a) Mach 0.596 

(b) Mach 0.678 

(c) Mach 0.96 

(d) Mach 1.14 

Fig.12 Eigenvalues on AGARD wing ROM roots 

Table 2 Flutter boundaries dynamic pressure for the AGARD 

445.6 wing 
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Fig.13 Flutter boundaries for the AGARD 445.6 wing 
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