Browse > Article
http://dx.doi.org/10.5139/IJASS.2015.16.4.548

Quasi-steady State Simulation of Rotating Detonation Engine  

Niyasdeen, Mohammed (Pusan National University)
Oh, Sejong (Pusan National University)
Kim, Kui Soon (Pusan National University)
Choi, Jeong-Yeol (Pusan National University)
Publication Information
International Journal of Aeronautical and Space Sciences / v.16, no.4, 2015 , pp. 548-559 More about this Journal
Abstract
We performed a numerical simulation based on the two-dimensional (2-D) unsteady Euler's equation with a single-step Arrhenius reaction model in order to investigate the detonation wave front propagation of an Argon (Ar) diluted oxy-hydrogen mixture ($2H_2+O_2+12Ar$). This simulation operates in the detonation frame of reference. We examine the effect of grid size and the performance impact of integrated quantities such as mass flow. For a given set of baseline conditions, the minimal and maximum grid resolutions required to simulate the respective detonation waves and the detonation cell structures are determined. Tertiary shock wave behavior for various grids and pre-exponential factors are analyzed. We found that particle fluctuation can be weakened by controlling the mass flow going through the oblique shock waves.
Keywords
Rotating detonation engine (RDE); pulse detonation engine (PDE); oblique shock waves; numerical simulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tsuboi, N., Yamada, T., Hayashi, A. K. and Yamada, E., "Three Dimensional Simulation on a Rotating Detonation Engine: Three Dimensional Shock Structure", 4th International Symposium on Energy Materials and their Applications, Japan, 2011.
2 Braun, E. M., Lu, F. K., Wilson, D. R. and Camberos, J. A., "Air Breathing Rotating Detonation Wave Engine Cycle Analysis", Aerospace Science and Technology, Vol. 27, Issue 1, 2013, pp. 201 - 208. DOI:10.1016/j.ast.2012.08.010   DOI
3 Davidenko, D., Eude, Y., Gokalp, I. and Falempin, F., "Theoretical and Numerical Studies on Continuous Detonation Wave Engines", Detonation Wave Propulsion Workshop, Bourges France, 11 - 13 July 2011.
4 Zhou, R. and Wang, J. P., "Numerical Investigation of Flow Particle Paths and Thermodynamic Performance of Continuously Rotating Detonation Engines", Combustion and Flame, Vol. 159, Issue 12, 2012, pp. 3632 - 3645. DOI:10.1016/j.combustflame.2012.07.007   DOI
5 Eude, Y. and Davidenko, D., "Numerical Simulation and Analysis of a Three Dimensional Continuous Detonation under Rocket Engine Conditions", Detonation Wave Propulsion Workshop, Bourges France, 11 - 13 July 2011.
6 Yi, T. H., Lou, J., Turangan, C., Choi, J. Y., Wolanski, P., "Propulsive Performance of a Continuously Rotational Detonation Engine", Journal of Propulsion and Power, Vol. 27, Issue. 1, 2011, pp. 171 - 181. DOI: 10.2514/1.46686   DOI
7 Naour, B. L., Falempin, F. and Miquel, F., "Recent Experimental Results obtained on Continuous Detonation Wave Engine", Detonation Wave Propulsion Workshop, Bourges France, 11 - 13 July 2011.
8 Davidenko, D., Jouot, F., Kudryavtsev, A., Dupre, G., Gokalp, I., Daniau, E. and Falempin, F., "Continuous Detonation Wave Engine Studies for Space Application", European Conference for Aeronautics and Space Sciences Proceedings Series, Vol. 1, 2009, pp. 353 - 366. DOI:10.1051/eucass/200901353   DOI
9 Endo, T., Susa, A., Kanekiyo, K., Hanta, Y., Mitsunobu, A. and Takahashi, T., "Development of Pulse Detonation Technology in Valveless mode and its Application to Turbine Drive Experiments", International Workshop on Detonation for Propulsion, South Korea, 14 - 15 November 2011.
10 Oran, E. S., Boris, J. P., Young, T., Flanigan, M., Burks, T. and Picone, M., "Numerical Simulations of Detonations in Hydrogen-Air and Methane-Air Mixtures", 18th International Symposium on Combustion, Vol. 18, Issue 1, 1981, pp. 1641 - 1649. DOI:10.1016/S0082-0784(81)80168-3   DOI
11 Taki, S. and Fujiwara, T., "Numerical Simulation of Triple Shock behavior of Gaseous Detonation", 18th International Symposium on Combustion, Vol. 18, Issue 1, 1981, pp. 1671 - 1681. DOI:10.1016/S0082-0784(81)80171-3   DOI
12 Kailasanath, K., Oran, E. S., Boris, J. P., and Young, T. R., "Determination of Detonation Cell Size and the Role of Transverse Waves in Two Dimensional Detonations," Combustion and Flame, Vol. 61, Issue 3, 1985, pp. 199 - 209. DOI:10.1016/0010-2180(85)90101-4   DOI
13 Gavrikov, A. I., Efimenko, A. A. and Dorofeev, S. B., "A Model for Detonation Cell Size prediction from Chemical Kinetics," Combustion and Flame, Vol. 120, Issues 1-2, 2000, pp. 19-33. DOI:10.1016/S0010-2180(99)00076-0   DOI
14 Bourlioux, A. and Majda, A. J., "Theoretical and Numerical Structure for Unstable Two Dimensional Detonations," Combustion and Flame, Vol. 90, Issues 3 - 4, 1992, pp. 211 - 229. DOI:10.1016/0010-2180(92)90084-3   DOI
15 Oran, E. S., Weber, J. W., Stefaniw, E. I., Lefebvre, M. H. and Anderson, J. D., "A Numerical Study of a Two-Dimensional H2-O2-Ar Detonation Using a Detailed Chemical Reaction Model," Combustion and Flame, Vol. 113, Issues 1-2, 1998, pp. 147 - 163. DOI:10.1016/S0010-2180(97)00218-6   DOI
16 Gamezo V. N., Desbordes, D. and Oran, E. S., "Formation and Evolution of Two-Dimensional Cellular Detonations," Combustion and Flame, Vol. 116, Issues 1 - 2, 1999, pp. 154 - 165. DOI:10.1016/S0010-2180(98)00031-5   DOI
17 Sharpe, G.J., "Transverse Waves in Numerical Simulations of Cellular Detonations," Journal of Fluid Mechanics, Vol. 447, 2001, pp. 31 - 51. DOI: http://dx.doi.org/10.1017/S0022112001005535   DOI
18 Hu, X. Y., Khoo, B. C., Zhang, D. L. and Jiang, Z. L., "The Cellular Structure of a Two-Dimensional H2/O2/Ar Detonation Wave," Combustion Theory and Modelling, Vol. 8, Issue 2, 2004, pp. 339 - 359.   DOI
19 Liang, Z. and Bauwens, L., "Cell Structure and Stability of Detonations with a Pressure-dependent Chain-branching Reaction Rate Model," Combustion Theory and Modelling, Vol. 9, Issue 1, 2005, pp. 93 - 112.   DOI
20 Fickett, W. and Davis, W.C., Detonation: Theory and Experiment, Dover Publications, Inc., Mineola, New York, 1979.
21 Voitsekhovskii, B.V. and Kotov, B.E., "Optical Investigation of the Front of Spinning Detonation Wave", Izv. Sibirsk. Otd. Akad. Nauk SSSR, Vol. 4, 1958.
22 Choi, J. Y., Ma, F. H. and Yang, V., "Some Numerical Issues on Simulation of Detonation Cell Structures", Combustion, Explosion, and Shock Waves, Vol. 44, Issue 5, 2008, pp. 560 - 578.   DOI
23 Hishida, M., Fujiwara, T. and Wolanski, P., "Fundamentals of Rotating Detonations", Shock waves, Vol. 19, Issue 1, 2009, pp. 1 - 10.   DOI
24 Voitsekhovskii, B. V., "About Spinning Detonation", Dokl. Akad. Nauk SSSR, Vol. 114, 1957, pp. 717 - 720.
25 Cullen, R. E., Nicholls, J. A. and Ragland, K.W., "Feasibility Studies of a Rotating Detonation Wave Rocket Motor", Journal of Spacecraft and Rockets, Vol. 3, Issue 6, 1966, pp. 893 - 898.   DOI
26 Nicholls, J. A., Wilkinson, H. R. and Morrison, R. B., "Intermittent Detonation as a Thrust-Producing Mechanism", Journal of Jet Propulsion, Vol. 27, Issue 5, 1957, pp. 534 - 541. DOI: 10.2514/8.12851   DOI
27 Bykovskii, F. A., Vasil'ev, A. A., Vedernikov, E. F. and Mitrofanov, V. V., "Explosive Combustion of a Gas Mixture in Radial Annular Chambers", Combustion, Explosion and Shock Waves, Vol. 30, Issue 4, 1994, pp. 510 - 516.   DOI
28 Bykovskii, F. A., Vasil'ev, A. A. and Vedernikov, E. F., "Continuous Spin Detonation of Fuel-air Mixtures", Combustion Explosion and Shock Waves, Vol. 42, Issue 4, 2006, pp. 463 - 471.   DOI
29 Daniau, E., Falempin, F. and Zhdan, S., "Pulsed and Rotating Detonation Propulsion Systems: First Step toward Operational Engines," AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies, 2005.
30 Falempin, F. and Daniau, E., "A Contribution to the Development of Actual Continuous Detonation Wave Engine", 15th AIAA International Space Planes and Hypersonics Systems and Technologies Conference, 2008.
31 Hayashi, A. K., Kimura, Y., Yamada, T., Yamada, E., Kindracki, J., Dzieminska, E., Wolanski, P., Tsuboi, N., Tangirala, V. and Fujiwara, T., "Sensitivity Analysis of Rotating Detonation Engine with a Detailed Reaction Model", 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, 2009
32 Schwer, D. and Kailasanath, K., "Numerical Investigation of the Physics of Rotating Detonation-Engines", Proceedings of the Combustion Institute, Vol. 33, Issue 2, 2011, pp. 2195 - 2202. DOI:10.1016/j.proci.2010.07.050   DOI
33 Claflin, S., "Recent Progress in Rotating Detonation Engine Development at Aerojet Rocketdyne", International Workshop on Detonation for Propulsion, Taiwan, 2013.
34 Austin, J. M., "The Role of Instability in Gaseous Detonation", Thesis Dissertation, California Institute of Technology, California, 2003.
35 Lee, J. H. S., "The Detonation Phenomenon", Cambridge University Press, New York, 2008.