• Title/Summary/Keyword: D$_1$R-module

Search Result 196, Processing Time 0.025 seconds

DERIVATION MODULES OF GROUP RINGS AND INTEGERS OF CYCLOTOMIC FIELDS

  • Chung, I.Y.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.31-36
    • /
    • 1983
  • Let R be a commutative ring with 1, and A a unitary commutative R-algebra. By a derivation module of A, we mean a pair (M, d), where M is an A-module and d: A.rarw.M and R-derivation, i.e., d is an R-linear mapping such that d(ab)=a)db)+b(da). A derivation module homomorphism f:(M,d).rarw.(N, .delta.) is an A-homomorphism f:M.rarw.N such that f.d=.delta.. A derivation module of A, (U, d), there exists a unique derivation module homomorphism f:(U, d).rarw.(M,.delta.). In fact, a universal derivation module of A exists in the category of derivation modules of A, and is unique up to unique derivation module isomorphisms [2, pp. 101]. When (U,d) is a universal derivation module of R-algebra A, the A-module U is denoted by U(A/R). For out convenience, U(A/R) will also be called a universal derivation module of A, and d the R-derivation corresponding to U(A/R).

  • PDF

A Design and Fabrication of a Compact Ka Band Transmit/Receive Module Using a Quad-Pack (쿼드팩을 이용한 소형 Ka 대역 송수신(T/R) 모듈의 설계 및 제작)

  • Oh, Hyun-Seok;Yeom, Kyung-Whan;Chong, Min-Kil;Na, Hyung-Gi;Lee, Sang-Joo;Lee, Ki-Won;Nam, Byung-Chang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.3
    • /
    • pp.389-398
    • /
    • 2011
  • In this paper, the design and fabrication of a transmit/receive(T/R) module for Ka-band phased array radar is presented. A 5bit digital phase shifter and digital attenuator were used in common for both transmitter and receiver considering unique Ka-band characteristic. The circulator was excluded in the T/R module and was placed outside T/R module. The transmitting power per element antenna is designed to be about 1 W and the noise figure is designed to be below 8 dB. The designed T/R module RF part has a compact size of $5\;mm{\times}4\;mm{\times}57\;mm$. In order to implement the T/R module, MMICs used in T/R module was separately assessed before assembly of the designed T/R module. The transmitter of the fabricated T/R module shows about 1 W at 5 dBm unit module input power and the receiver shows a gain of about 20 dB and a noise figure of below 8 dB as expected in the design stage.

Fabrication of Shingled Design Bifacial c-Si Photovoltaic Modules (슁글드 디자인 고출력 양면수광형 단결정 실리콘 태양광 모듈 제작)

  • Park, Min-Joon;Kim, Minseob;Shin, Jinho;Byeon, Su-Bin;Jeong, Chaehwan
    • Current Photovoltaic Research
    • /
    • v.10 no.1
    • /
    • pp.1-5
    • /
    • 2022
  • Bifacial photovoltaic (PV) technology has received considerable attention in recent years due to the potential to achieve a higher annual energy yield compared to its monofacial PV systems. In this study, we fabricated the bifacial c-Si PV module with a shingled design using the conventional patterned bifacial solar cells. The shingled design PV module has recently attracted attention as a high-power module. Compared to the conventional module, it can have a much more active area due to the busbar-free structure. We employed the transparent backsheet for a light reception at the rear side of the PV module. Finally, we achieved a conversion power of 453.9 W for a 1300 mm × 2000 mm area. Moreover, we perform reliability tests to verify the durability of our Shingled Design Bifacial c-Si Photovoltaic module.

w-MATLIS COTORSION MODULES AND w-MATLIS DOMAINS

  • Pu, Yongyan;Tang, Gaohua;Wang, Fanggui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1187-1198
    • /
    • 2019
  • Let R be a domain with its field Q of quotients. An R-module M is said to be weak w-projective if $Ext^1_R(M,N)=0$ for all $N{\in}{\mathcal{P}}^{\dagger}_w$, where ${\mathcal{P}}^{\dagger}_w$ denotes the class of GV-torsionfree R-modules N with the property that $Ext^k_R(M,N)=0$ for all w-projective R-modules M and for all integers $k{\geq}1$. In this paper, we define a domain R to be w-Matlis if the weak w-projective dimension of the R-module Q is ${\leq}1$. To characterize w-Matlis domains, we introduce the concept of w-Matlis cotorsion modules and study some basic properties of w-Matlis modules. Using these concepts, we show that R is a w-Matlis domain if and only if $Ext^k_R(Q,D)=0$ for any ${\mathcal{P}}^{\dagger}_w$-divisible R-module D and any integer $k{\geq}1$, if and only if every ${\mathcal{P}}^{\dagger}_w$-divisible module is w-Matlis cotorsion, if and only if w.w-pdRQ/$R{\leq}1$.

A Design and Fabrication of the X-Band Transmit/Receive Module for Active Phased Array SAR Antennas (능동 위상 배열 SAR 안테나를 위한 X-대역 송수신 모듈의 설계 및 제작)

  • Chong, Min-Kil;Kim, Sang-Keun;Na, Hyung-Gi;Lee, Jong-Hwan;Yi, Dong-Woo;Baik, Seung-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.10
    • /
    • pp.1050-1060
    • /
    • 2009
  • In this paper, a X-Band T/R-module for SAR(Synthetic Aperture Radar) systems based on active phased array antennas is designed and fabricated. The T/R modules have a and width of more than 800 MHz centered at X-Band and support dual, switched polarizations. The output power of the module is 7 watts over a wide bandwidth. The noise figure is as low as 3.9 dB. Phase and amplitude are controlled by a 6-bit phase shifter and a 6-bit digital attenuator, respectively. Further the fabricated T/R module has est and calibration port with directional coupler and power divider. Highly integrated T/R module is achieved by using LTCC(Low Temperature Co-fired Ceramic) multiple layer substrate. RMS gain error is less than 0.8 dB max. in Rx mode, and RMS phase error is less than $4^{\circ}$ max. in Rx/Tx phase under all operating frequency band, or the T/R module meet the required electrical performance m test. This structure an be applied to active phase array SAR Antennas.

A note on jordan left derivations

  • Jun, Kil-Woung;Kim, Byung-Do
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.221-228
    • /
    • 1996
  • Throughout, R will represent an associative ring with center Z(R). A module X is said to be n-torsionfree, where n is an integer, if nx = 0, $x \in X$ implies x = 0. An additive mapping $D : R \to X$, where X is a left R-module, will be called a Jordan left derivation if $D(a^2) = 2aD(a), a \in R$. M. Bresar and J. Vukman [1] showed that the existence of a nonzero Jordan left derivation of R into X implies R is commutative if X is a 2-torsionfree and 3-torsionfree left R-module.

  • PDF

Locally Polynomial Rings over PVMD's

  • Kim, Hwankoo;Kwon, Tae In
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.1
    • /
    • pp.131-135
    • /
    • 2005
  • Let an integral domain R be locally polynomial over an integral domain D and let R be a content module over D. We show that if D is a PVMD, then $$Cl_t(R){\sim_=}Cl_t(D)$$. This generalizes the polynomial case. We also show that R is a PVMD if and only if D is a PVMD if and only if $R_{N_v}$ is a PVMD.

  • PDF

Fabrication of Shingled Design Solar Module with Controllable Horizontal and Vertical Width (가로세로 폭의 제어가 가능한 슁글드 디자인 태양광 모듈 제조)

  • Min-Joon Park;Minseob Kim;Eunbi Lee;Yu-Jin Kim;Chaehwan Jeong
    • Current Photovoltaic Research
    • /
    • v.11 no.3
    • /
    • pp.75-78
    • /
    • 2023
  • Recently, the installation of photovoltaic modules in urban areas has been increasing. In particular, the demand for solar modules installed in a limited space is increasing. However, since the crystalline silicon solar module's size is proportional to the solar cell's size, it is difficult to manufacture a module that can be installed in a limited area. In this study, we fabricated a solar module with a shingled design that can control horizontal and vertical width using a bi-directional laser scribing method. We fabricated a string cell with a width of 1/5 compared to the existing shingled design string cells using a bi-directional laser scribing method, and we fabricated a solar module by connecting three strings in parallel. Finally, we achieved a conversion power of 5.521 W at a 103 mm × 320 mm area.

CHARACTERIZATION OF WEAKLY COFINITE LOCAL COHOMOLOGY MODULES

  • Moharram Aghapournahr;Marziye Hatamkhani
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.637-647
    • /
    • 2023
  • Let R be a commutative Noetherian ring, 𝔞 an ideal of R, M an arbitrary R-module and X a finite R-module. We prove a characterization for Hi𝔞(M) and Hi𝔞(X, M) to be 𝔞-weakly cofinite for all i, whenever one of the following cases holds: (a) ara(𝔞) ≤ 1, (b) dim R/𝔞 ≤ 1 or (c) dim R ≤ 2. We also prove that, if M is a weakly Laskerian R-module, then Hi𝔞(X, M) is 𝔞-weakly cofinite for all i, whenever dim X ≤ 2 or dim M ≤ 2 (resp. (R, m) a local ring and dim X ≤ 3 or dim M ≤ 3). Let d = dim M < ∞, we prove an equivalent condition for top local cohomology module Hd𝔞(M) to be weakly Artinian.

Feasibility Study of Salt Farm and Solar Power Paraell System (염전 병행 태양광 발전 시스템 타당성 검토를 위한 기초연구)

  • Kang, Seong-hyun;Kim, Bong-suck;GIM, Geun Ho;Park, Jongsung;Kim, Deok Sung;Lim, Cheolhyun
    • Current Photovoltaic Research
    • /
    • v.9 no.1
    • /
    • pp.17-21
    • /
    • 2021
  • In this study, the effect of water level and temperature on the power generation was investigated in a water tank with an aquavoltaic PV module to perform feasibility research for the development of salt farm aquavoltaic system. The silicon solar cell attached to the bottom of each water tank is a 1-cell mini module, and the underwater effects of the crystal phase (19.0~19.9% of single- & 17.9~19.9% of poly-crystalline) of the PV module were investigated, and power generation characteristics for water level (0~10 cm) and temperature (10~40℃) were analyzed. The deterioration coefficients according to the water level and temperature of each single- and poly-crystalline module were investigated at very similar levels such as, -2.01 %/cm and -2.02 %/cm, -0.50 %/℃ and -0.48 %/℃, respectively. Therefore, in salt farm aquavoltaic system, water levels need to maintain as low as possible, and heat-induced degradation is similar to those shown in general land, and no factors have been found to be affected by the underwater environment depending on the determination.