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Abstract. Let an integral domain R be locally polynomial over an integral domain D and

let R be a content module over D. We show that if D is a PVMD, then Clt(R) ∼= Clt(D).

This generalizes the polynomial case. We also show that R is a PVMD if and only if D is

a PVMD if and only if RNv is a PVMD.

1. Introduction and preliminaries

P. Eakin and J. Silver in [1] introduced the concept of a locally polynomial
ring, which is a generalization of a polynomial ring as follows. They examined the
relationship between a ring D and an algebra which is locally polynomial over D.

Definition 1.1. If a ring R is an algebra over a ring D, then R is said to be locally
polynomial over D provided that, for every prime ideal P of D, RP = R⊗D DP is
a polynomial ring over DP .

For example, let Z denotes the ring of integers, X an indeterminate over Z and
{pi}∞i=1 the set of prime numbers. Set R = Z[{X/pi}∞i=1]. Although the ring R is
neither Noetherian nor Krull, it is locally polynomial ring over Z. For, if (p) denotes
a prime ideal of Z then Rp = R⊗Z Z(p) = Z(p)[X/p].

Note that the class of polynomial rings is properly contained in the class of
locally polynomial rings.

The following results are useful in our study.
• If R is locally polynomial over a ring D, then R is faithfully flat over D [1,

(1.2)].
• If R is locally polynomial over an integral domain D, then R is an integral
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domain [1, (1.7)].
If R is locally polynomial over a ring D, then P. Eakin and J. Silver defined the

content of any element in RS , where S is the set of all regular elements of D.

Definition 1.2. Suppose that R is locally polynomial over a ring D and let S be
the set of all regular elements of D. For f ∈ RS , define the content of f to be the
smallest fractional ideal c(f) of D such that f ∈ c(f)R.

More generally, let M be an R-module and let x ∈ M . The content c(x) of x is
defined as the intersection of those ideals A of R such that x ∈ AM . If x ∈ c(x)M
for every x ∈ M , then M is called a content R-module.

Several domains, including PVMD’s, are related to the notion of ∗-operation.
For a detailed study of ∗-operations, we refer the reader to [5, Sections 32 and 34].
For a quicker definition and for other purposes we note the following.

Let F (R) be the set of all fractional ideals of an integral domain R. The
operation I 7→ (I−1)−1 = Iv, on F (R), is called the v-operation. An ideal I ∈
F (R) is a v-ideal (or divisorial) if I = Iv. Then It is defined to be

⋃{Jv :
J is a nonzero finitely generated subideal of I}. An ideal I is called a t-ideal if
I = It. For any star-operation ∗, a fraction ideal I of R is said to be ∗-invertible if
(IJ)∗ = R for some fractional ideal J of R. The set TI(R) is of t-invertible t-ideals
of R is a group under the t-product I ∗ J = (IJ)t, and the set P (R) of nonzero
principal fractional ideals of R under multiplication is a subgroup of TI(R). The
quotient group Clt(R) = TI(R)/P (R) is called the t-class group of R; unlike the
divisor class group, the t-class group is defined for arbitrary integral domains. When
R is a Krull domain, the t- and the v-operations coincide and Clt(R) = Cl(R), the
usual divisor class group of R.

Throughout this paper, we shall assume that R is locally polynomial over an
integral domain D and that R is a content module over D.

In this paper, we show that if D is a PVMD, then Clt(R) ∼= Clt(D). This
generalizes the polynomial case. We also show that R is a PVMD if and only if D
is a PVMD if and only if RNv is a PVMD.

2. Main results

The following lemmas are well-known in the case of polynomial rings.

Lemma 2.1. Suppose that R is locally polynomial over an integral domain D and
that R is a content module over D. Consider the following statements.

(1) D is integrally closed.

(2) If 0 6= f, g ∈ RD∗ , then [c(f)c(g)]v = [c(fg)]v.

(3) If 0 6= f ∈ R, then fRD∗ ∩R = f [c(f)]−1R.

Then (1) ⇐ (2) ⇔ (3).

Proof. (2) ⇒ (1): Let M be any maximal ideal of D. Denote by cDM
(h) the

content of any h ∈ RD∗ over DM . Then cDM
(h) = c(h)DM by [1, (2.24)]. Thus for
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0 6= f, g ∈ RD∗ , [cDM
(fg)]v = [c(fg)DM ]v = [(c(fg))vDM ]v = [(c(f)c(g))vDM ]v =

[(c(f)c(g))DM ]v = [cDM
(f)cDM

(g)]v. Since RD∗ ∼= (RM )D∗
M

= DM [{XM}]D∗M =
K[{XM}], where K = q.f.(D) = q.f.(DM ), DM is integrally closed. Thus D =⋂

DM is integrally closed.
(2) ⇔ (3). The proofs of these are similar to those of the polynomial case. ¤
An integral domain D is called a Prüfer v-multiplication domain (for short,

PVMD) if every nonzero finitely generated ideal I of D is t-invertible.

Lemma 2.2. Suppose that R is locally polynomial over an integral domain D and
that R is a content module over D. If D is a PVMD, then [c(f)c(g)]v = [c(fg)]v
for any 0 6= f, g ∈ RD∗ .

Proof. We first note that c(h) is f.g. for any 0 6= h ∈ RD∗ . Let M be a maximal
t-ideal of D and let 0 6= f, g ∈ RD∗ . Then DM is a valuation domain, and hence
a Prüfer domain. Thus [c(f)c(g)]DM = cDM

(f)cDM
(g) = cDM

(fg) = [c(fg)]DM .
Therefore [c(f)c(g)]v = [c(f)c(g)]t =

⋂
[c(f)c(g)]DM =

⋂
[c(fg)]DM = [c(fg)]t =

[c(fg)]v, where the second and the forth equalities follow from [6, Theorem 3.5].¤

Lemma 2.3. If J is a divisorial ideal of R and I = J ∩ K 6= (0), then I =⋂{dc(g)−1 | J ⊆ d
g R, d ∈ D, g ∈ R}.

Proof. The proof of this is similar to that of the polynomial case. ¤

Lemma 2.4. Suppose that D is a PVMD and let J be an integral divisorial ideal
of R.

(1) If J ∩D = I 6= (0), then J = IR and I is a divisorial ideal of D.

(2) If J ∩ D = (0), then there exists f ∈ R and a divisorial ideal H of D such
that J = fHR.

Moreover, if J is v-invertible, then I and H are v-invertible, and if J is a t-invertible
t-ideal of R, then I and H are t-invertible t-ideals.

Proof. (1) If J ∩D = I 6= (0), then by Lemma 2.3, I =
⋂{dc(g)−1 | J ⊆ d

g R, d ∈
D, g ∈ R}. If f ∈ J , then fg ∈ dR for any d ∈ D and g ∈ R such that J ⊆ d

g R.
Thus c(fg) ⊆ dD. Since D is a PVMD, by Lemma 2.2 c(f)c(g) ⊆ [c(fg)]v ⊆ dD
and so c(f) ⊆ I. Thus f ∈ IR. Since the reverse inclusion always holds, J = IR.

(2) If J ∩ D = (0), then JRD∗ = fRD∗ for some f ∈ R. By Lemma 2.1,
J ⊆ JRD∗ ∩ R = fRD∗ ∩ R = fc(f)−1R. Note that dc(f)−1 ⊆ D for some
0 6= d ∈ D. Thus J ′ := d

f J is an integral divisorial ideal of R and J ′RD∗ = RD∗ .
Since J ′ ∩ D := I ′ 6= (0), by the case (1) J ′ = I ′R and thus J = fd−1I ′R and
H := d−1I ′ is a divisorial ideal of D. ¤

Theorem 2.5. Suppose that R is locally polynomial over an integral domain D and
that R is a content module over D. If D is a PVMD, then Clt(R) ∼= Clt(D).

Proof. Define ϕ : TI(D) → TI(R) by ϕ(I) = IR. Then ϕ is a well-defined
homomorphism. This induces a homomorphism ψ : Clt(D) → Clt(R). To prove
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the injectivity of ϕ, it is enough to consider integral ideals. Let I and I ′ be integral
t-invertible t-ideals of D such that ϕ(I) = ϕ(I ′). Since R is faithfully flat over D,
I = IR∩D = I ′R∩D = I ′. Thus ϕ is monic. Moreover ψ is also injective. Indeed,
suppose that I ′ a t-invertible t-ideal of D such that ϕ(I ′) = I ′R is principal. Then
dI ′ := I ⊆ D for some 0 6= d ∈ D. Thus ϕ(I) = ϕ(dI ′) = dϕ(I ′) is principal, say
IR = fR for some f ∈ R. Denote by K the quotient field of D. If 0 6= g ∈ I,
then gR ⊆ fR implies that gRD∗ ⊆ fRD∗ . Since RD∗ is a polynomial ring over K,
there is a well-defined degree. Thus deg(f) ≤ deg(g) = 0 and so f ∈ R ∩K = D.
Since R is faithfully flat over D, IR = fR implies that I = fD. Thus ψ is monic.
To prove the surjectivity of ψ, it is enough to consider integral ideals. Denote by
[I] the class of I in Clt(D). If J is an integral t-invertible t-ideal of R such that
J ∩D 6= (0), then by Lemma 2.4(1), J ∩D is a t-invertible t-ideal of D such that
ψ([J ∩D]) = [J ]. Suppose that J ∩D = (0). Then by Lemma 2.4(2), there exists an
f ∈ R and a t-invertible t-ideal H of D such that J = fHR. That is, ψ([H]) = [J ].
¤

Corollary 2.6. Suppose that R is locally polynomial over an integral domain D and
that R is a content module over D. If D is a Krull domain, then Cl(R) ∼= Cl(D).

Proof. This follows from [1, (2.29)] and Theorem 2.5. ¤

Lemma 2.7. Suppose that D is a PVMD and let T be a multiplicatively closed
subset of R contained in Nv = {f ∈ R | c(f)v = D}. Let I be a nonzero fractional
ideal of D. Then

(1) (IRT )−1 = I−1RT ,

(2) (IRT )v = IvRT , and

(3) (IRT )t = ItRT .

Proof. The proof of this is similar to that of the polynomial case. ¤

Corollary 2.8. Suppose that D is a PVMD. Let I be a nonzero ideal of D. Then

(1) (IR)v = IvR, (IR)t = ItR;

(2) (IRN )v = IvRN , (IRN )t = ItRN ;

(3) (IRNv )v = IvRNv , (IRNv )t = ItRNv .

Lemma 2.9. Let ∗ be a ∗-operation on D. Let I be a nonzero ideal of D. If I is a
∗-ideal, then IRN∗ ∩K = IRN∗ ∩D = I.

Proof. Let I be a ∗-ideal of D. It suffices to show that IRN∗ ∩ K = I. Let
k ∈ IRN∗ ∩K. Then kg = f for some g ∈ N∗ and f ∈ IR. Thus kD = (kc(g))∗ =
(c(kg))∗ = (c(f))∗ ⊆ I∗ = I. Hence k ∈ I. Therefore IRN∗ ∩K = I since the other
inclusion is clear. ¤

Let Df (R) be the set of finite type v-ideals of an integral domain R.
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Lemma 2.10. Suppose that D is a PVMD. Let I be a nonzero ideal of D. Then
IR ∈ Df (R) if and only if I ∈ Df (D).

Proof. Suppose that IR ∈ Df (R), say IR = (f1, . . . , fn)v. Since IR is a v-ideal,
IR = (IR)v = IvR. Since R is faithfully flat over D, I = IR ∩D = IvR ∩D = Iv.
Now IR ⊆ [(c(f1) + · · ·+ c(fn))R]v = (c(f1) + · · ·+ c(fn))vR ⊆ IvR = IR. Hence
IR = (c(f1) + · · · + c(fn))vR. Thus I = (c(f1) + · · · + c(fn))v. Hence I ∈ Df (D).
Conversely, suppose that I ∈ Df (D). Let I = (I ′)v, where I ′ is a f.g. ideal contained
in I. Then IR = (I ′)vR = (I ′R)v. Thus IR ∈ Df (R). ¤

Theorem 2.11. The following statements are equivalent.

(1) D is a PVMD.

(2) R is a PVMD.

(3) RNv is a PVMD.

Proof. (1) ⇒ (2). Suppose that D is a PVMD. Let J ∈ Df (R). By Lemma 2.4,
J = fIR for some f ∈ RD∗ and some v-ideal I of D. Then IR = f−1J ∈ Df (R).
Hence I ∈ Df (D) by Lemma 2.10. Thus I is a t-invertible t-ideal of D. By Lemma
2.7, J−1 = f−1I−1R and hence (JJ−1)t = (fIRf−1I−1R)t = (II−1R)t = R. Thus
every J ∈ Df (R) is t-invertible. Hence R is a PVMD.

(2) ⇒ (3). This follows from the fact that any localization of a PVMD is also
a PVMD.

(3) ⇒ (1). Let I be a nonzero f.g. ideal of D. Then IRNv is also a f.g.
ideal of RNv . Thus RNv = (IRNv (IRNv )−1)t = (IRNvI−1RNv )t = (II−1RNv )t =
(II−1)tRNv . By Lemma 2.9, D = (II−1)t and so I is t-invertible. Therefore D is a
PVMD. ¤
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