• Title/Summary/Keyword: Cytotoxic protein

Search Result 464, Processing Time 0.027 seconds

Inhibitory Effects of Methanolic Extracts of Medicinal Plants on Nitric Oxide Production in Activated Macrophage RAW 264.7 Cells (약용식물 추출물에 의한 면역세포 산화질소 생성 억제 활성 분석)

  • Seo, Jin-Suk;Lee, Tae-Hoon;Lee, Sang-Min;Lee, Seung-Eun;Seong, Nak-Sul;Kim, Ji-Young
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.3
    • /
    • pp.173-178
    • /
    • 2009
  • A variety of herbs and plants have been traditionally used in oriental folk medicine for the treatment of inflammatory diseases. In our attempt to search for anti-inflammatory agents from natural products, we investigated 64 methanol extracts from 42 medicinal plants belonging to 10 families which were evaluated for inhibitory activities of NO production in lipopolysaccharide (LPS)-stimulated macrophage RAW 264.7 cells. Among them, 16 extracts exhibited inhibitory activities of NO production ($IC_{50}$ values ranging from 59.6 to 94.7 ${\mu}g/m{\ell}$). Only the extract from aerial parts of Hosta lancifolia (H. lancifolia) did not exert cytotoxic effects at the concentrations tested. The extract from H. lancifolia decreased the mRNA and protein levels of inducible nitric oxide synthase (iNOS) and pro-inflammatory cytokines in activated macrophage RAW 264.7 cells in dose-dependent manner. The results suggest that the extract may contain bioactive compounds that suppress expression of pro-inflammatory cytokines, which may prove beneficial with regard to the development of natural agents for prevention and treatment of inflammatory diseases.

Co-Expression of a Chimeric Protease Inhibitor Secreted by a Tumor-Targeted Salmonella Protects Therapeutic Proteins from Proteolytic Degradation

  • Quintero, David;Carrafa, Jamie;Vincent, Lena;Kim, Hee Jong;Wohlschlegel, James;Bermudes, David
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.2079-2094
    • /
    • 2018
  • Sunflower trypsin inhibitor (SFTI) is a 14-amino-acid bicyclic peptide that contains a single internal disulfide bond. We initially constructed chimeras of SFTI with N-terminal secretion signals from the Escherichia coli OmpA and Pseudomonas aeruginosa ToxA, but only detected small amounts of protease inhibition resulting from these constructs. A substantially higher degree of protease inhibition was detected from a C-terminal SFTI fusion with E. coli YebF, which radiated more than a centimeter from an individual colony of E. coli using a culture-based inhibitor assay. Inhibitory activity was further improved in YebF-SFTI fusions by the addition of a trypsin cleavage signal immediately upstream of SFTI, and resulted in production of a 14-amino-acid, disulfide-bonded SFTI free in the culture supernatant. To assess the potential of the secreted SFTI to protect the ability of a cytotoxic protein to kill tumor cells, we utilized a tumor-selective form of the Pseudomonas ToxA (OTG-PE38K) alone and expressed as a polycistronic construct with YebF-SFTI in the tumor-targeted Salmonella VNP20009. When we assessed the ability of toxin-containing culture supernatants to kill MDA-MB-468 breast cancer cells, the untreated OTG-PE38K was able to eliminate all detectable tumor cells, while pretreatment with trypsin resulted in the complete loss of anticancer cytotoxicity. However, when OTG-PE38K was co-expressed with YebF-SFTI, cytotoxicity was completely retained in the presence of trypsin. These data demonstrate SFTI chimeras are secreted in a functional form and that co-expression of protease inhibitors with therapeutic proteins by tumor-targeted bacteria has the potential to enhance the activity of therapeutic proteins by suppressing their degradation within a proteolytic environment.

Protective Effects of Ursolic Acid on Osteoblastic Differentiation via Activation of IER3/Nrf2

  • Lee, Sang-im
    • Journal of dental hygiene science
    • /
    • v.19 no.3
    • /
    • pp.198-204
    • /
    • 2019
  • Background: Oxidative stress is a known to be associated with in the pathogenesis of many inflammatory diseases, including periodontitis. Ursolic acid is a pentacyclic triterpenoid with has antimicrobial, antioxidative, and anticancer properties. However, the role of ursolic acid in the regulating of osteogenesis remains undetermined. This study was aimed to elucidate the crucial osteogenic effects of ursolic acid and its ability to inhibit oxidative stress by targeting the immediate early response 3 (IER3)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Methods: Cell proliferation was determined using water-soluble tetrazolium salt assay, cell differentiation was evaluated by alkaline phosphatase (ALP) activity, and formation of calcium nodules was detected using alizarin red S stain. Generation of reactive oxygen species (ROS) was determined using by DCFH-DA fluorescence dye in hydrogen peroxide ($H_2O_2$)-treated MG-63 cells. Expression levels of IER3, Nrf2, and heme oxygenase-1 (HO-1) were analyzed using western blot analysis. Results: Our results showed that ursolic acid up-regulated the proliferation of osteoblasts without any cytotoxic effects, and promoted ALP activity and mineralization. $H_2O_2$-induced ROS generation was found to be significantly inhibited on treatment with ursolic acid. Furthermore, in $H_2O_2$-treated cells, the expression of the early response genes: IER3, Nrf2, and Nrf2-related phase II enzyme (HO-1) was enhanced in the presence of ursolic acid. Conclusion: The key findings of the present study elucidate the protective effects of ursolic acid against oxidative stress conditions in osteoblasts via the IER3/Nrf2 pathway. Thus, ursolic acid may be developed as a preventative and therapeutic agent for mineral homeostasis and inflammatory diseases caused due to oxidative injury.

Anti-Inflammatory Effects of Grasshopper Ketone from Sargassum fulvellum Ethanol Extract on Lipopolysaccharide-Induced Inflammatory Responses in RAW 264.7 Cells

  • Kim, Min-Ji;Jeong, So-Mi;Kang, Bo-Kyeong;Kim, Koth-Bong-Woo-Ri;Ahn, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.5
    • /
    • pp.820-826
    • /
    • 2019
  • This study evaluated the anti-inflammatory potential of a grasshopper ketone (GK) isolated from the brown alga Sargassum fulvellum on lipopolysaccharide (LPS)-induced RAW 264.7 murine macrophage cell line. GK was isolated and purified from the n-hexane fraction and its structure was verified on the basis of NMR spectroscopic data. GK up to $100{\mu}g/ml$ is not cytotoxic to RAW 264.7, and is an effective inhibitor of LPS-induced NO production in RAW 264.7 cells. The production of pro-inflammatory cytokines, including IL-6, $IL-1{\beta}$, and $TNF-{\alpha}$ was found significantly reduced in $0.1-100{\mu}g/ml$ dose ranges of GK treatment (p < 0.05). We confirmed the dose-dependent and significant inhibition of iNOS and COX-2 proteins expression. In addition, it has been shown that GK induces anti-inflammatory effects by inhibiting MAPKs (ERK, JNK, and p38) and $NF-{\kappa}B$ p65 phosphorylation. Our results show that the anti-inflammatory properties of GK may be due to the inhibition of the $NF-{\kappa}B$ and MAPKs pathways, which are associated with the attenuation of cytokine secretion.

Atopic Dermatitis-Related Inflammation in Macrophages and Keratinocytes: The Inhibitory Effects of Bee Venom

  • Kim, Deok-Hyun;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.36 no.2
    • /
    • pp.80-87
    • /
    • 2019
  • Background: This study investigated the anti-inflammatory effects of bee venom (BV) through the inhibition of nuclear factor kappa beta ($NF-{\kappa}B$) expression in macrophages and keratinocytes. Methods: Cell viability assays were performed to investigate the cytotoxicity of BV in activated macrophages [lipopolysaccharide (LPS)] and keratinocytes [interferon-gamma/tumor necrosis factor-alpha ($IFN-{\gamma}/TNF-{\alpha}$)]. A luciferase assay was performed to investigate the cellular expression of $NF-{\kappa}B$ in relation to BV dose. The expression of $NF-{\kappa}B$ inhibitors ($p-I{\kappa}B{\alpha}$, $I{\kappa}B{\alpha}$, and p50 and p65) were determined by Western Blot analysis, and the electromobility shift assay. A nitrite quantification assay was performed to investigate the effect of BV, and $NF-{\kappa}B$ inhibitor on nitric oxide (NO) production in macrophages. In addition, Western Blot analysis was performed to investigate the effect of BV on the expression of mitogen-activated protein kinases (MAPK) in activated macrophages and keratinocytes. Results: BV was not cytotoxic to activated macrophages and keratinocytes. Transcriptional activity of $NF-{\kappa}B$, and p50, p65, and $p-I{\kappa}B{\alpha}$ expression was reduced by treatment with BV in activated macrophages and keratinocytes. Treatment with BV and an $NF-{\kappa}B$ inhibitor, reduced the production of NO by activated macrophages, and also reduced $NF-{\kappa}B$ transcriptional activity in activated keratinocytes (compared with either BV, or $NF-{\kappa}B$ inhibitor treatment). Furthermore, BV decreased p38, p-p38, JNK, and p-JNK expression in LPS-activated macrophages and $IFN-{\gamma}/TNF-{\alpha}$-activated keratinocytes. Conclusion: BV blocked the signaling pathway of $NF-{\kappa}B$, which plays an important role in the inflammatory response in macrophages and keratinocytes. These findings provided the possibility of BV in the treatment of atopic dermatitis.

Inhibitory Effects of Cheongpochukeo-tang on LPS-induced Inflammation Model (LPS로 유도된 염증모델에 대한 청포축어탕의 억제 효과)

  • Hong, Ka-Kyung;Lee, Soo-Hyung;Jung, Hyun-Tae;Kim, Song-Baek
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.34 no.4
    • /
    • pp.12-29
    • /
    • 2021
  • Objective: This study was performed to investigate the inhibitory effect of Cheongpochukeo-tang (CCT) on lipopolysaccharide (LPS)-induced inflammation model. Methods: RAW 264.7 cells were pre-treated with CCT and incubated with LPS (500 ng/ml) after 1 hour. Cell viability was measured by MTT assay to figure out cytotoxicity of CCT. The production of nitric oxide and mRNA expression of pro-inflammatory cytokine were measured. And the activation of mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB) were examined to figure out molecular mechanisms of CCT's anti-inflammatory effects. In addition, mice survival rate and cytokine levels of serum were observed after treated with CCT. And mice liver tissues were observed and their cytokines levels in liver tissue were measured. Results: CCT did not have cytotoxic effect in RAW 264.7 cells. It inhibited LPS-induced nitric oxide (NO) production, but showed an increase in NO by itself at 2 mg/ml concentration. CCT inhibited mRNA expression of IL-1β, IL-6, TNF-α in a dose dependant and the activaton of MAPKs and NF-κB. In addition, CCT reduced mortality in the LPS-induced mouse model and inhibited production of cytokines in mouse serum and liver tissue. Conclusion: The results suggest that CCT could reduce LPS-induced inflammation by inhibiting MAPKs and NF-κB activaton, NO production, and pro-inflammatory cytokines secretion. Thereby, CCT could be effective medicine for the inflammatory disease.

Cytotoxic Effect of Bee (A. mellifera) Venom on Cancer Cell Lines

  • Borojeni, Sima Khalilifard;Zolfagharian, Hossein;Babaie, Mahdi;Javadi, Iraj
    • Journal of Pharmacopuncture
    • /
    • v.23 no.4
    • /
    • pp.212-219
    • /
    • 2020
  • Objectives: Nowadays cancer treatment is an important challenge in the medical world that needs better therapies. Many active secretions produced by insects such as honey bees used to discover new anticancer drugs. Bee venom (BV) has a potent anti inflammatory, anti cancer and tumor effects. The aim of present study is evaluation of anticancer effects induced by Apis mellifera venom (AmV) on cell Lines. Methods: AmV was selected for study on cancer cell lines. Total protein, molecular weight and LD50 of crude venom were determined. Then, cells were grown in Dulbecco's Modified Eagle medium supplemented with 10% fetal bovine serum and 1% antibiotics. The A549, HeLa and MDA-MB-231 cell Lines were exposed by different concentration of AmV. The morphology of cells was determined and cell viability was studed by MTT assay. Evaluation of cell death was determined by and DNA fragmentation. Results: The results from MTT assay showed that 3.125 ㎍/mL of A549, 12.5 for HeLa and 6.25 ㎍/mL of MDA-MB-231 killed 50% of cells (p < 0.05). Morphological analysis and the results from hoescht staining and DNA fragmentation indicated that cell death induced by AmV was significantly apoptosis. Conclusion: The data showed that using lower dosage of AmV during treatment period cause inhibition of proliferation in time and dose dependant manner. Findings indicated that some ingredients of AmV have anticancer effects and with further investigation it can be used in production of anticancer drugs.

Effects of isorhamnetin on the regulation of mitochondrial function in C2C12 muscle cells (Isorhamnetin의 근육세포 미토콘드리아 기능조절에 미치는 효과)

  • Lee, Mak-Soon;Kim, Yangha
    • Journal of Nutrition and Health
    • /
    • v.54 no.4
    • /
    • pp.335-341
    • /
    • 2021
  • Purpose: Muscle mitochondria play a key role in regulating fatty acid and glucose metabolism. Dysfunction of muscle mitochondria is associated with metabolic diseases such as obesity and type 2 diabetes. Isorhamnetin (ISOR), also known as 3-O-methylquercetin, a quercetin metabolite, is a naturally occurring flavonoid in many plants. This study evaluated the effects of ISOR on the regulation of the mitochondrial function of C2C12 muscle cells. Methods: C2C12 muscle cells were differentiated for 5 days, and then treated in various concentrations of ISOR. Cytotoxicity was determined by assessing cell viability using the water-soluble tetrazolium salt-8 assay principle at different concentrations of ISOR and time points. Levels of the mitochondrial DNA (mtDNA) content and gene expression were measured by quantitative real-time polymerase chain reaction. The citrate synthase (CS) activity was quantified by the enzymatic method. Results: ISOR at a concentration of 10 µM did not show any cytotoxic effects. ISOR increased the mtDNA copy number in a time- or dose-dependent manner. The messenger RNA levels of genes involved in mitochondrial function, such as peroxisome proliferator-activated receptor-γ coactivator-1α, and uncoupling protein 3 were significantly stimulated by the ISOR treatment. The CS activity was also significantly increased in a time- or dose-dependent manner. Conclusion: These results suggest that ISOR enhances the regulation of mitochondrial function, which was at least partially mediated via the stimulation of the mtDNA replication, mitochondrial gene expression, and CS activity in C2C12 muscle cells. Therefore, ISOR may be useful as a potential food ingredient to prevent metabolic diseases-associated muscle mitochondrial dysfunction.

Designing a novel mRNA vaccine against Vibrio harveyi infection in fish: an immunoinformatics approach

  • Islam, Sk Injamamul;Mou, Moslema Jahan;Sanjida, Saloa;Tariq, Muhammad;Nasir, Saad;Mahfuj, Sarower
    • Genomics & Informatics
    • /
    • v.20 no.1
    • /
    • pp.11.1-11.20
    • /
    • 2022
  • Vibrio harveyi belongs to the Vibrio genus that causes vibriosis in marine and aquatic fish species through double-stranded DNA virus replication. In humans, around 12 Vibrio species can cause gastroenteritis (gastrointestinal illness). A large amount of virus particles can be found in the cytoplasm of infected cells, which may cause death. Despite these devastating complications, there is still no cure or vaccine for the virus. As a result, we used an immunoinformatics approach to develop a multi-epitope vaccine against most pathogenic hemolysin gene of V. harveyi. The immunodominant T- and B-cell epitopes were identified using the hemolysin protein. We developed a vaccine employing three possible epitopes: cytotoxic T-lymphocytes, helper T-lymphocytes, and linear B-lymphocyte epitopes, after thorough testing. The vaccine was developed to be antigenic, immunogenic, and non-allergenic, as well as having a better solubility. Molecular dynamics simulation revealed significant structural stiffness and binding stability. In addition, the immunological simulation generated by computer revealed that the vaccination might elicit immune reactions in the actual life after injection. Finally, using Escherichia coli K12 as a model, codon optimization yielded ideal GC content and a higher codon adaptation index value, which was then included in the cloning vector pET2+ (a). Altogether, our experiment implies that the proposed peptide vaccine might be a good option for vibriosis prophylaxis.

Suppressive effects of Morus alba Linne Root Bark (MRAL) on activation of MC/9 mast cells (상백피에 의한 MC/9 비만세포의 활성 억제 조절 연구)

  • Lee, Ki Jeon;Kim, Bok Kyu;Kil, Ki Jung
    • The Korea Journal of Herbology
    • /
    • v.28 no.1
    • /
    • pp.33-42
    • /
    • 2013
  • Objective : Morus alba Linne Root Bark (MRAL) is a medicinal herb in Korean Medicine, known for its anti-inflammatory and anti-allergic properties. However, its mechanisms of action and the cellular targets have not yet been found and the study was developed to investigate the allergic suppressive effect of MRAL. The purpose of this study is to investigate the allergic suppressive effects of MRAL on activation of MC/9 mast cells. Methods : Cytotoxic activity of MRAL (50, 100, 200, 400 ${\mu}g/mL$) on MC/9 mast cells measured using EZ-Cytox cell viability assay kit (WST reagent). The levels of interleukin-5 (IL-5), IL-13 and IL-4, IL-5, IL-6, IL-13 mRNA expression were measured by enzyme-linked immunosorbent assay (ELISA) and real-time PCR respectively. The expression of transcription factors such as GATA-1, GATA-2, NFAT, AP-1 and NF-${\kappa}B$ p65 DNA binding activity were measured by western blot and electrophoresis mobility shift assay (EMSA). Results : Our results indicated that MRAL (50 ${\mu}g/mL$, 100 ${\mu}g/mL$) significantly inhibited PMA/Ionomycin-induced production of IL-5 and IL-13 and the expression of IL-4, IL-5, IL-6 and IL-13 mRNA in MC/9 mast cells. Moreover, MRAL (50 ${\mu}g/mL$, 100 ${\mu}g/mL$) inhibited PMA/Ionomycin-induced GATA-1, GATA-2, NFAT-1, NFAT-2, c-Fos protein expression and NF-${\kappa}B$ p65 DNA binding activity in MC/9 mast cells. Conclusions : In conclusion, we suspect the anti-allergenic activities of MRAL, may be related to the regulation of transcription factors GATA-1, GATA-2, NFAT-1, NFAT-2, c-Fos and NF-${\kappa}B$ p65 DNA binding assay causing inhibition of Th2 cytokines IL-5 and IL-13 in mast cells.