• Title/Summary/Keyword: Cytoplasmic Effects

Search Result 223, Processing Time 0.024 seconds

In Vitro Immunopotentiating Activities of Cellular Fractions of Lactic Acid Bacteria Isolated from Kimchi and Bifidobacteria

  • Hur, Haeng-Jeon;Lee, Ki-Won;Kim, Hae-Yeong;Chung, Dae-Kyun;Lee, Hyong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.661-666
    • /
    • 2006
  • The present study represents the investigation of in vitro immunopotentiating activities of cellular fractions of major lactic acid bacteria found in kimchi (KLAB) and bifidobacteria. The macrophage cells, RAW264.7, were stimulated with heat-killed whole-cell, cell-wall, and cytoplasmic fractions of four strains of KLAB (Leuconostoc mesenteroides, Leuconostoc citreum, Lactobacillus plantarum, and Lactobacillus sake) and two strains of bifidobacteria (Bifidobacterium longum and Bifidobacterium lactis) each, and then the production of nitric oxide (NO) and cytokines including tumor necrosis $factor-\alpha\;(TNF-\alpha)$ and interleukin-6 (IL-6) was measured by Griess and ELISA assays, respectively. Heat-killed wholecell and cell-wall fractions-but not the cytoplasmic fraction-from all strains of KLAB significantly increased the production of NO in RAW264.7 cells, and all fractions from bifidobacteria exerted similar effects. In the production of $TNF-\alpha$, heat-killed whole-cell and cell-wall fractions of L. plantarum showed the strongest effect, followed by L. sake and B. lactis, whereas other KLAB fractions did not exert any effect. In the production of IL-6, only whole-cell and cell-wall fractions of L. plantarum were effective. These results, taken together, indicate that L. plantarum might playa critical role in the immunopotentiating activities of kimchi.

Influence of Naloxone on Catecholamine Release Evoked by Nicotinic Receptor Stimulation in the Isolated Rat Adrenal Gland

  • Kim Ok-Min;Lim Geon-Han;Lim Dong-Yoon
    • Archives of Pharmacal Research
    • /
    • v.28 no.6
    • /
    • pp.699-708
    • /
    • 2005
  • The present study was designed to investigate the effect of naloxone, a well known opioid antagonist, on the secretion of catecholamines (CA) evoked by cholinergic stimulation and membrane-depolarization in the isolated perfused rat adrenal glands, and to establish its mechanism of action. Naloxone ($10^{-6}\~10^{-5}$ M), perfused into an adrenal vein for 60 min, produced dose- and time-dependent inhibition of CA secretory responses evoked by ACh ($5.32\times10^{-3}$ M), high K+ ($5.6\times10^{-2}$ M), DMPP ($10^{-4}$ M) and McN-A-343 ($10^{-4}$ M). Naloxone itself also failed to affect the basal CA output. In adrenal glands loaded with naloxone ($3\times10^{-6}$ M), the CA secretory responses evoked by Bay-K-8644, an activator of L-type $Ca^{2+}$ channels, and cyclopiazonic acid, an inhibitor of cytoplasmic $Ca^{2+}$-ATPase, were also inhibited. In the presence of met-enkephalin ($5\times10^{-6}$ M), a well known opioid agonist, the CA secretory responses evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were also significantly inhibited. Taken together, these results suggest that naloxone greatly inhibits the CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as that by membrane depolarization. It seems that these inhibitory effects of naloxone does not involve opioid receptors, but might be mediated by blocking both the calcium influx into the rat adrenal medullary chromaffin cells and the uptake of $Ca^{2+}$ into the cytoplasmic calcium store, which are at least partly relevant to the direct interaction with the nicotinic receptor itself.

Nuclear Localization Signals in Prototype Foamy Viral Integrase for Successive Infection and Replication in Dividing Cells

  • Hossain, Md. Alamgir;Ali, Md. Khadem;Shin, Cha-Gyun
    • Molecules and Cells
    • /
    • v.37 no.2
    • /
    • pp.140-148
    • /
    • 2014
  • We identified four basic amino acid residues as nuclear localization signals (NLS) in the C-terminal domain of the prototype foamy viral (PFV) integrase (IN) protein that were essential for viral replication. We constructed seven point mutants in the C-terminal domain by changing the lysine and arginine at residues 305, 308, 313, 315, 318, 324, and 329 to threonine or proline, respectively, to identify residues conferring NLS activity. Our results showed that mutation of these residues had no effect on expression assembly, release of viral particles, or in vitro recombinant IN enzymatic activity. However, mutations at residues 305 (R ${\rightarrow}$ T), 313(R ${\rightarrow}$ T), 315(R ${\rightarrow}$ P), and 329(R ${\rightarrow}$ T) lead to the production of defective viral particles with loss of infectivity, whereas non-defective mutations at residues 308(R ${\rightarrow}$ T), 318(K ${\rightarrow}$ T), and 324(K ${\rightarrow}$ T) did not show any adverse effects on subsequent production or release of viral particles. Sub-cellular fractionation and immunostaining for viral protein PFV-IN and PFV-Gag localization revealed predominant cytoplasmic localization of PFV-IN in defective mutants, whereas cytoplasmic and nuclear localization of PFV-IN was observed in wild type and non-defective mutants. However sub-cellular localization of PFV-Gag resulted in predominant nuclear localization and less presence in the cytoplasm of the wild type and non-defective mutants. But defective mutants showed only nuclear localization of Gag. Therefore, we postulate that four basic arginine residues at 305, 313, 315 and 329 confer the karyoplilic properties of PFV-IN and are essential for successful viral integration and replication.

Comparative Effects of $PKB-{\alpha}$ and $PKC-{\zeta}$ on the Phosphorylation of GLUT4-Containing Vesicles in Rat Adipocytes

  • Hah, Jong-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.6
    • /
    • pp.487-496
    • /
    • 2000
  • Insulin stimulates glucose transport in muscle and fat cells by promoting the translocation of glucose transporter (GLUT4) to the cell surface. Phosphatidylinositide 3-kinase (PI3-kinase) has been implicated in this process. However, the involvement of protein kinase B (PKB)/Akt and $PKC-{\zeta}$, those are known as the downstream target of PI3-kinase in regulation of GLUT4 translocation, is not known yet. An interesting possibility is that these protein kinases phosphorylate GLUT4 directly in this process. In the present study, $PKB-{\alpha}$ and $PKC-{\zeta}$ were added exogenously to GLUT4-containing vesicles purified from low density microsome (LDM) of the rat adipocytes by immunoadsorption and immunoprecipitation for direct phosphorylation of GLUT4. Interestingly GLUT4 was phosphorylated by $PKC-{\zeta}$ and its phosphorylation was increased in insulin stimulated state but GLUT4 was not phosphorylated by $PKB-{\alpha}.$ However, the GST-fusion proteins, GLUT4 C-terminal cytoplasmic domain (GLUT4C) and the entire major GLUT4 cytoplasmic domain corresponding to N-terminus, central loop and C-terminus in tandem (GLUT4NLC) were phosphorylated by both $PKB-{\alpha}$ and $PKC-{\zeta}.$ The immunoblots of $PKC-{\zeta}$ and $PKB-{\alpha}$ antibodies with GLUT4-containing vesicles preparation showed that $PKC-{\zeta}$ was co-localized with the vesicles but not $PKB-{\alpha}.$ From the above results, it is clear that $PKC-{\zeta}$ interacts with GLUT4-containing vesicles and it phosphorylates GLUT4 protein directly but $PKB-{\alpha}$ does not interact with GLUT4, suggesting that insulin-elicited signals that pass through PI3-kinase subsequently diverge into two independent pathways, an Akt pathway and a $PKC-{\zeta}$ pathway, and that later pathway contributes, at least in part, insulin stimulation of GLUT4 translocation in adipocytes via a direct GLUT4 phosphorylation.

  • PDF

Inhibitory Effects of Dihydrexidine on Catecholamine Release from the Rat Adrenal Medulla

  • Lee, Jae-Hwang;Lim, Hyo-Jeong;Lim, Dong-Yoon
    • Biomolecules & Therapeutics
    • /
    • v.17 no.1
    • /
    • pp.32-42
    • /
    • 2009
  • The purpose of the present study was to examine the effect of dihydrexidine, a full $D_1$ receptor agonist, on the secretion of catecholamines (CA) from the perfused model of the rat adrenal gland, and to establish its mechanism of action. Dihydrexidine (10-100 ${\mu}M$), perfused into an adrenal vein for 60 min, relatively produced dose- and time-dependent inhibition in the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM), DMPP (100 ${\mu}M$) and McN-A-343 (100 ${\mu}M$). Dihydrexidine itself did fail to affect basal CA output. Also, in adrenal glands loaded with dihydrexidine (30 ${\mu}M$), the CA secretory responses evoked by Bay-K-8644 (10 ${\mu}M$), an activator of L-type $Ca^{2+}$ channels, cyclopiazonic acid (10 ${\mu}M$), an inhibitor of cytoplasmic $Ca^{2+}$-ATPase, and veratridine, an activator of voltage-dependent $Na+$ channels (10 ${\mu}M$), were also markedly inhibited, respectively. However, in the simultaneous presence of dihydrexidine (30 ${\mu}M$) and R (+)-SCH23390 (a selective antagonist of $D_1$ receptor, 3 ${\mu}M$), the CA secretory responses evoked by ACh, high K+, DMPP, McN-A-343, Bay-K-8644, cyclopiazonic acid and veratridine were considerably recovered to the extent of the corresponding control secretion compared with the inhibitory responses by dihydrexidinetreatment alone. In conclusion, these experimental results suggest that dihydrexidine significantly inhibits the CA secretion evoked by cholinergic stimulation (both nicotinic and muscarinic receptors) and membrane depolarization from the rat adrenal medulla. It seems that this inhibitory effect of dihydrexidine may be mediated by inhibiting influx of both $Ca^{2+}$ and $Na^+$ into the cytoplasm as well as by suppression of $Ca^{2+}$ release from cytoplasmic calcium store through activation of dopaminergic $D_1$ receptors located on the rat adrenomedullary chromaffin cells.

Iron-Saturated Lactoferrin Stimulates Cell Cycle Progression through PI3K/Akt Pathway

  • Lee, Shin-Hee;Pyo, Chul-Woong;Hahm, Dae Hyun;Kim, Jiyoung;Choi, Sang-Yun
    • Molecules and Cells
    • /
    • v.28 no.1
    • /
    • pp.37-42
    • /
    • 2009
  • Iron binding lactoferrin (Lf) is involved in the control of cell cycle progression. However, the molecular basis underlying the effects of Lf on cell cycle control, as well as its target genes, remains incompletely understood. In this study, we have demonstrated that a relatively low level of ironsaturated Lf, Lf($Fe^{3+}$), can stimulate S phase cell cycle entry, and requires Akt activation in MCF-7 cells. Lf($Fe^{3+}$) immediately induced Akt phosphorylation at Ser473, which subsequently induced the phosphorylation of two G1-checkpoint Cdk inhibitors, $p21^{Cip/WAF1}$ and $p27^{kip1}$. The Lf($Fe^{3+}$)-induced phosphorylation of Cdk inhibitors impaired their nuclear import behavior, thereby inducing cell cycle progression. However, the treatment of cells with a PI3K inhibitor, LY294002, almost completely blocked Lf($Fe^{3+}$)-stimulated cell cycle progression. LY294002 treatment abrogated Lf($Fe^{3+}$)-induced Akt activation, and prevented the cytoplasmic localization of $p27^{kip1}$. Higher levels of $p21^{Cip/WAF1}$ were also detected in the cytoplasmic sub-cellular compartment as a measure of cellular response to Lf($Fe^{3+}$). Consequently, the degree of phosphorylation of retinoblastoma protein was enhanced in response to Lf($Fe^{3+}$). Therefore, we conclude that Lf($Fe^{3+}$), as a potential antagonist of Cdk inhibitors, can facilitate the functions of E2F during progression to S phase via the Akt signaling pathway.

Study on Nucleo-Cytoplasmic Interaction by Somatic Cell Nuclear Transfer in Bovine (소 체내포 핵이식에 의한 핵-세포질 상호작용에 관한 연구)

  • 정희태;최종엽;박춘근;김정익;민동미
    • Journal of Embryo Transfer
    • /
    • v.15 no.1
    • /
    • pp.23-31
    • /
    • 2000
  • This study was conducted to investigate the effects of quiescent treatment of donor cells and activation treatment time of recipient cytoplasm on nuclear remodeling and in vitro development of somatic cell-cloned bovine embryos. Serum starved, confluent and nonquiescent cycling adult skin cells were teansferred into enucleated oocytes. Nuclear transfer oocytes were activated at 30 min, 1 and 2 hrs after electrofusion. Some nuclear transfer embryos(23% to 35%) extruded a polar body, which was not affected by quiescent treatment of donor cells and activiation time of recipient cytoplasm. About 68% of nuclear transfer embryos fused with a serum starved cells has a chromatin clump, but which was not different from embryos fused with confluent(51%) and nonquiescent(47%) cells. The proportion of embryos with a single chromatin clump was sightly increased when nuclear transfer embryos were activated within 30 min after fusion(69%) compared to those were activated at 1 and 2 hrs after fusion, but there was not significantly different. Development rates to the blastocyst stage were 8.6% and 15.9% when serum starved and confluent cells were transferred, which were higher than that of control group. Developmental rate to the blastocyst stage was higher in embryos were activated within 30 min after fusion (17.3%) compared to those of embryos were activated at 1 and 2 hrs after fusion (P<0.05). From the present result, it is suggested that quiescent treatment of donor cells and activation time of recipient cytoplasm can affect the in vitro development. Quiescent plasm activation within 30 min after fusion could increase the number of embryos with a normal chromation structure, which results in increased in vitro development.

  • PDF

A Case of Diffuse Alveolar Hemorrhage with Glomerulonephritis after Propylthiouracil Treatment (Propylthiouracil 복용 후 발생한 사구체신염이 동반된 미만성 폐출혈 1예)

  • Lee, Ji-Hyun;Kim, Min-Su;Lee, Jae-Gon;Kim, Dae-Sik;Yang, Hae-Jin;Kang, Kyung-Woo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.72 no.1
    • /
    • pp.93-97
    • /
    • 2012
  • Propylthiouracil (PTU) is one of the most common drugs used in the treatment of Graves' disease. There are a number of side effects found with PTU use including fever, rash, arthralgia, and flu-like symptoms. Recently antineutrophil cytoplasmic antibodies (ANCA) positive vasculitis after PTU treatment was reported as a rare side effect, which can cause diffuse alveolar hemorrhage and glomerulonephritis. A 45-year-old woman with Graves' disease had been treated with PTU for five months, complained of hemoptysis due to pulmonary alveolar hemorrhage causing anemia, and also had hematuria. Simple chest X-ray and HRCT showed bilateral consolidation and bronchoalveolar lavage fluid revealed alveolar hemorrhage. A serologic test was positive for ANCA against myeloperoxidase and proteinase-3. Such findings suggested that the presence of PTU induced ANCA positive vasculitis. Cessation of PTU and the administration of high dose steroids improved the clinical manifestation, radiologic and serologic findings. We observed ANCA titer serially for 6 years. During the follow up period, ANCA titer decreased slowly and stayed within the acceptable upper normal limit.

Effects of prematuration culture with a phosphodiesterase-3 inhibitor on oocyte morphology and embryo quality in in vitro maturation

  • Cheruveetil, Mohammed Ashraf;Shetty, Prasanna Kumar;Rajendran, Arya;Asif, Muhammed;Rao, Kamini A
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.4
    • /
    • pp.352-361
    • /
    • 2021
  • Objective: The study assessed the developmental potential of germinal vesicle (GV) oocytes subjected to in vitro maturation (IVM) after prematuration culture with cilostamide (a phosphodiesterase-3 inhibitor) and the impact of cilostamide exposure on the morphology of meiosis II (MII) oocytes and subsequent embryo quality. Methods: In total, 994 oocytes were collected from 63 patients. Among 307 GV oocytes, 140 oocytes were selected for the experimental group and 130 oocytes for the control group. The denuded GV-stage oocytes were cultured for 6 hours with cilostamide in the experimental group and without cilostamide in the control group. After 6 hours, the oocytes in the experimental group were washed and transferred to fresh IVM medium. The maturational status of the oocytes in both groups was examined at 26, 36, and 48 hours. Fertilization was assessed at 18 hours post-intracytoplasmic sperm injection. Embryo quality was assessed on days 3 and 5. Results: In total, 92.1% of the oocytes remained in the GV stage, while 6.4% converted to the MI stage (p<0.01) after cilostamide exposure. In both groups, more MII oocytes were observed at 36 hours (25.8% vs. 21.5%) than at 26 hours (10.8% vs. 14.6%) and 48 hours (13% vs. 7.9%) (p>0.05). With the advent of cilostamide, blastocyst quality was better in the experimental group than in the control group (p<0.05). Conclusion: Cilostamide effectively blocked nuclear maturation and promoted cytoplasmic growth. Prematuration culture with cilostamide enabled synchronization between cytoplasmic and nuclear maturity, resulting in better blastocyst outcomes.

Inhibitory Effects of Atmospheric Ozone on Magnaporthe grisea conidia

  • Hur, Jae-Seoun;Kim, Jung-Ah;Kim, Minjin;Koh, Young-Jin
    • The Plant Pathology Journal
    • /
    • v.18 no.1
    • /
    • pp.43-49
    • /
    • 2002
  • Direct effects of atmospheric ozone on conidia of the rice blast pathogen, Magnaporthe grisea, were investigated to evaluate ozone-induced effects on infection potential of the rice blast fungus. Acute ozone exposure (200 nl $1^{-1}$, 8 h $day^{-1}$3 days) during sporulation significantly affected conidial morphology, appressorium formation, and disease development on rice loaves. Ozone caused reduction in conidial size and change in conidial shape. Relative cytoplasmic volume of lipids and vacuoles were increased in ozone-exposed conidia. Inhibition of appressorium formation and simultaneous increase in endogenous levee of polyamines were found in ozone-exposed conidia. The inverse relationship between appressorium formation and level of polyamines implies that ozone-mediated increase in intracellular level of polyamines may inhibit appressorium formation in rice blast fungus. Furthermore, rice plants inoculated with ozone-fumigated conidia exhibited less severe disease development than those with unfumigated conidia. This result suggests that the anti-conidial consequence of acute ozone will eventually weaken the rice blasts potential for multiple infection cycle. This further suggests that consequently, rice blast can be transformed from an explosive disease to one that has limited epidemiological potential in the field.