Browse > Article
http://dx.doi.org/10.14348/molcells.2014.2331

Nuclear Localization Signals in Prototype Foamy Viral Integrase for Successive Infection and Replication in Dividing Cells  

Hossain, Md. Alamgir (Department of Biotechnology, Chung-Ang University)
Ali, Md. Khadem (Department of Biotechnology, Chung-Ang University)
Shin, Cha-Gyun (Department of Biotechnology, Chung-Ang University)
Abstract
We identified four basic amino acid residues as nuclear localization signals (NLS) in the C-terminal domain of the prototype foamy viral (PFV) integrase (IN) protein that were essential for viral replication. We constructed seven point mutants in the C-terminal domain by changing the lysine and arginine at residues 305, 308, 313, 315, 318, 324, and 329 to threonine or proline, respectively, to identify residues conferring NLS activity. Our results showed that mutation of these residues had no effect on expression assembly, release of viral particles, or in vitro recombinant IN enzymatic activity. However, mutations at residues 305 (R ${\rightarrow}$ T), 313(R ${\rightarrow}$ T), 315(R ${\rightarrow}$ P), and 329(R ${\rightarrow}$ T) lead to the production of defective viral particles with loss of infectivity, whereas non-defective mutations at residues 308(R ${\rightarrow}$ T), 318(K ${\rightarrow}$ T), and 324(K ${\rightarrow}$ T) did not show any adverse effects on subsequent production or release of viral particles. Sub-cellular fractionation and immunostaining for viral protein PFV-IN and PFV-Gag localization revealed predominant cytoplasmic localization of PFV-IN in defective mutants, whereas cytoplasmic and nuclear localization of PFV-IN was observed in wild type and non-defective mutants. However sub-cellular localization of PFV-Gag resulted in predominant nuclear localization and less presence in the cytoplasm of the wild type and non-defective mutants. But defective mutants showed only nuclear localization of Gag. Therefore, we postulate that four basic arginine residues at 305, 313, 315 and 329 confer the karyoplilic properties of PFV-IN and are essential for successful viral integration and replication.
Keywords
integrase; mutation; nuclear localization signal; prototype foamy virus; retrovirus;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Achong, B.G., Mansell, P.W., Epstein, M.A., and Clifford. P. (1971). An unusual virus in cultures from a human nasopharyngeal carcinoma. J. Natl. Cancer Inst. 46, 299-307.
2 Bouyac-Bertoia, M., Dvorin, J.D., Fouchier, R.A., Jenkins, Y., Meyer, B.E., Wu, L.I., Emerman, M., and Malim, M.H. (2001). HIV-1 infection requires a functional integrase NLS. Mol. Cell 7, 1025-1035.   DOI   ScienceOn
3 Brown, P.O. (1997). Integration. In Retroviruses, J.M. Coffin, S.H., Hughes, and H.E. Varmus, eds. (Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press), pp. 161-204.
4 Bukrinsky, M.I., Haggerty, S., Dempsey, M.P., Sharova, N., Adzhubel, A., Spitz, L., Lewis, P., Goldfarb, D., Emerman, M., and Stevenson, M. (1993). A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature 365, 666-669.   DOI   ScienceOn
5 Bushman, F.D., Fujiwara, T., and Craigie, R. (1990). Retroviral DNA integration directed by HIV integration protein in vitro. Science 249, 1555-1558.   DOI
6 Emiliani, S., Mousnier, A., Busschots, K., Maroun, M., Maele, B., Tempe, D., Vandekerckhove, L., Moisant, F., Ben-Slama, L., Witvrouw, M., et al. (2005). Integrase mutants defective for interaction with LEDGE/ p75 are impaired in chromosome tethering and HIV-1 replication. J. Biol. Chem. 280, 25517-25523.   DOI   ScienceOn
7 Engelman, A. (1999). In vivo analysis of retroviral integrase structure and function. Adv .Virus Res. 52, 411-426.   DOI
8 Connor, R.I., Chen, B.K., Choe, S., Landau, N.R. (1995). Vpr is required for efficient replication of human immunodeficiency virus type 1 in mononuclear phagocytes. Virology 206, 935-944.   DOI   ScienceOn
9 Craigie, R. (2001). HIV integrase, a brief overview from chemistry to therapeutics. J. Biol. Chem. 276, 23213-23216.   DOI   ScienceOn
10 Engelman, A., Mizuuchi, K., and Craigie, R. (1991). HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell 67, 1211-1221.   DOI   ScienceOn
11 Epstein, M.A. (2004). Simian retroviral infections in human beings. Lancet 364, 138-139.   DOI   ScienceOn
12 Fassati, A. (2006). HIV infection of non-dividing cells: a divisive problem. Retrovirology 3, 74.   DOI   ScienceOn
13 Fauquet, C.M., and Fargette, D. (2005). International Committee on Taxonomy of Viruses and the 3,142 unassigned species. Virol. J. 2, 64.   DOI   ScienceOn
14 Heinzinger, N.K., Bukrinsky, M.L., Haggerty, S.A., Ragland, A.M., Kewalramani, V., Lee, M.A., Gendelman, H.E., Ratner, M., Stevenson, M., and Emerman, M. (1994). The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc. Natl. Acad. Sci. USA 91, 7311-7315.   DOI   ScienceOn
15 Gallay, P., Hope, T., Chin, D., and Trono, D. (1997). HIV-1 infection of nondividing cells through the recognition of integrase by the importin/karyopherin pathway. Proc. Natl. Acad. Sci. USA 94, 9825-9830.   DOI   ScienceOn
16 Holden, P., and Horton, W.A. (2009). Crude subcellular fractionation of cultured mammalian cell lines. BMC Res. Notes 2, 243.   DOI   ScienceOn
17 Gorlich, D., and Kutay, U. (1999). Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 607-660.   DOI   ScienceOn
18 Herchenroder, O., Renne, R., Loncar, D., Cobb, E.K., Murthy, K.K., Schneider, J., Mergi, A., and Luciw, P.A. (1994). Isolation, cloning, and sequencing of simian foamy viruses from chimpanzees (SFVcpz): high homology to human foamy virus (HFV). Virology 201, 187-199.   DOI   ScienceOn
19 Imrich, H., Heinkelein, M., Herchenroder, O., and Rethwilm, A. (2000). Primate foamy virus Pol proteins are imported into the nucleus. J. Gen. Virol. 81, 2941-2947.   DOI
20 Kang, S.Y., Ahn, D.G., Lee, C., Lee, Y.S., and Shin, C.-G. (2008). Functional nucleotides of U5 LTR determining substrate specificity of prototype foamy virus integrase. J. Microbial. Biotechnol. 18, 1044-1049.   과학기술학회마을
21 Katz, R.A., Greger, J.G., and Skalka, A.M. (2002). Transduction of interphase cells by avian sarcoma virus. J. Virol. 76, 5422-5434.   DOI
22 Lecellier, C.H, and Saib, A. (2000). Foamy viruses: between retroviruses and pararetroviruses. Virology 271, 1-8.   DOI   ScienceOn
23 Katz, R.A., Greger, J.G., and Skalka, A.M. (2005). Effects of cell cycle status on early events in retroviral replication. J. Cell. Biochem. 94, 880-889.   DOI   ScienceOn
24 Kootstra, N.A., and Schuitemaker, H. (1999). Phenotype of HIV-1 lacking a functional nuclear localization signal in matrix protein of Gag and Vpr is comparable to wild-type HIV-1 in primary macrophages. Virology 253, 170-180.   DOI   ScienceOn
25 Kukolj, G., Jones, K.S., and Skalka, A.M. (1997). Subcellular localization of avian sarcoma virus and human immunodeficiency virus type 1 integrases. J. Virol. 71, 843-847.
26 Lee, H.S., Kang, S.Y., and Shin, C.-G. (2005). Characterization of the functional domains of human foamy virus integrase using chimeric integrases. Mol. Cells 19, 246-255.
27 Linial, M.L. (2007). Foamy viruses. In Field Virology, D.M. Knipe and P.M. Howley, eds. (Philadelphia, PA: Lippincott Williams & Wilkins), pp. 2245-2262.
28 Lo, Y.T., Tian, T., Nadeau, P.E., Park, J., and Mergia, A. (2010). The foamy virus genome remains unintegrated in the nuclei of G1/S phase-arrested cells, and integrase is critical for preintegration complex transport into the nucleus. J. Virol. 84, 2832-2842.   DOI   ScienceOn
29 Lochelt, M., and Flugel, R.M. (1996). The human foamy virus pol gene is expressed as a Pro-Pol polyprotein and not as a Gag-Pol fusion protein. J. Virol. 70, 1033-1040.
30 Lochelt, M., Yu, S.F., Linial, M.L., and Flugel, R.M. (1995). The human foamy virus internal promoter is required for efficient gene expression and infectivity. Virology 206, 601-610.   DOI   ScienceOn
31 Mergia, A., and Heinkelein, M. (2003). Foamy virus vectors. Curr. Top. Microbiol. Immunol. 277, 131-159.
32 Mahnke, C., Lochelt, M., Bannert, B., and Flugel, R.M. (1990). Specific enzyme-linked immunosorbent assay for the detection of antibodies to the human spumavirus. J. Virol. Methods 29, 13-22.   DOI   ScienceOn
33 Mattaj, I.W., and Englmeier, L. (1998). Nucleocytoplasmic transport: the soluble phase. Annu. Rev. Biochem. 67, 265-306.   DOI   ScienceOn
34 Patton, G.S., Erlwein, O., and McClure, M.O. 2004. Cell-cycle dependence of foamy virus vectors. J. Gen. Virol. 85, 2925-2930.   DOI   ScienceOn
35 Miller, M.D., Farnet, C.M., and Bushman, F.D. (1997). Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition. J. Virol. 71, 5382-5390.
36 Mullers, E., Stirnnagel, K., Kaulfuss, S., and Lindemann, D. (2011). Prototype foamy virus gag nuclear localization: a novel pathway among retroviruses. J. Virol. 85, 9276-9285.   DOI   ScienceOn
37 Pearl, L.H., and Taylor, W.R. (1987). A structural model for the retroviral proteases. Nature 329, 351-354.   DOI   ScienceOn
38 Petit, C., Schwartz, O., and Mammano, F. (2000). The karyophilic properties of human immunodeficiency virus type 1 integrase are not required for nuclear import of proviral DNA. J. Virol. 74, 7119-7126.   DOI
39 Rethwilm, A. (1996). Unexpected replication pathways of foamy viruses. J. Acquir. Immune. Defic. Syndr. Hum. Retrovirol. 13 Suppl 1, S248-253.   DOI
40 Rethwilm, A. (2005). Foamy viruses. In Virology, V.T. Meulen and B.W.J. Mahy, eds. (London, United Kingdom: Topley & Wilson), pp. 1304-1321.
41 Schweizer, M., Turek, R., Hahn, H., Schliephake, A., Netzer, K.O., Eder, G., Reinhardt, M., Rethwilm, A., and Neumann-Haefelin, D. (1995). Markers of foamy virus infections in monkeys, apes, and accidentally infected humans: appropriate testing fails to confirm suspected foamy virus prevalence in humans. AIDS Res. Hum. Retroviruses 11, 161-170.   DOI   ScienceOn
42 Rinke, C.S., Boyer, P.L., Sullivan, M.D., Hughes, S.H., and Linial, M.L. (2002). Mutation of the catalytic domain of the foamy virus reverse transcriptase leads to loss of processivity and infectivity. J. Virol. 76, 7560-7570.   DOI
43 Rothnie, H.M., Chapdelaine, Y., Chapdelaine, Y., and Hohn, T. (1994). Pararetroviruses and retroviruses: a comparative review of viral structure and gene expression strategies. Adv. Virus. Res. 44, 1-67.   DOI
44 Schliephake, A.W., and Rethwilm, A. (1994). Nuclear localization of foamy virus Gag precursor protein. J. Virol. 68, 4946-4954.
45 Suzuki, Y., and Craigie, R. (2007). The road to chromatin - nuclear entry of retroviruses. Nat. Rev. Microbiol. 5, 187-196.   DOI   ScienceOn
46 Tobaly-Tapiero, J., Bittoun, P., Lehmann-Che, J., Delelis, O., Giron, M.L., de The, H., and Saib, A. (2008). Chromatin tethering of incoming foamy virus by the structural Gag protein. Traffic 9, 1717-1727.   DOI   ScienceOn
47 Woodward, C.L., Wang, C., Dixon, W.J., Htun, H., and Chow, S.A. (2003). Subcellular localization of feline immunodeficiency virus integrase and mapping of its karyophilic determinant. J. Virol. 77, 4516-4527.   DOI   ScienceOn
48 Yu, S.F., and Linial, M.L. (1993). Analysis of the role of the bel and bet open reading frames of human foamy virus by using a new quantitative assay. J. Virol. 67, 6618-6624.
49 Yu, S.F., Sullivan, M.D., and Linial, M.L. (1999). Evidence that the human foamy virus genome is DNA. J. Virol. 73, 1565-1572.
50 Yu, S.F., Edelmann, K., Strong, R.K., Moebes, A., Rethwilm, A., and Linial, M.L. (1996). The carboxyl terminus of the human foamy virus Gag protein contains separable nucleic acid binding and nuclear transport domains. J. Virol. 70, 8255-8262.
51 Wei, S.Q., Mizuuchi, K., and Craigie, R. (1997). A large nucleoprotein assembly at the ends of the viral DNA mediates retroviral DNA integration. EMBO J. 16, 7511-7520.   DOI   ScienceOn
52 Enssle, J., Moebes, A., Heinkelein, M., Panhuysen, M., Mauer, B., Schweizer, M., Neumann-Haefelin, D., and Rethwilm, A. (1999). An active foamy virus integrase is required for virus replication. J. Gen. Virol. 80, 1445-1452.   DOI
53 Linial, M.L. (1999). Foamy viruses are unconventional retroviruses. J. Virol. 73, 1747-1755.