DOI QR코드

DOI QR Code

Inhibitory Effects of Atmospheric Ozone on Magnaporthe grisea conidia

  • Hur, Jae-Seoun (Department of Environmental Education, Sunchon National University) ;
  • Kim, Jung-Ah (Department of Environmental Education, Sunchon National University) ;
  • Kim, Minjin (Department of Biology, Sunchon National University) ;
  • Koh, Young-Jin (Department of Applied Biology, Sunchon National University)
  • Published : 2002.02.01

Abstract

Direct effects of atmospheric ozone on conidia of the rice blast pathogen, Magnaporthe grisea, were investigated to evaluate ozone-induced effects on infection potential of the rice blast fungus. Acute ozone exposure (200 nl $1^{-1}$, 8 h $day^{-1}$3 days) during sporulation significantly affected conidial morphology, appressorium formation, and disease development on rice loaves. Ozone caused reduction in conidial size and change in conidial shape. Relative cytoplasmic volume of lipids and vacuoles were increased in ozone-exposed conidia. Inhibition of appressorium formation and simultaneous increase in endogenous levee of polyamines were found in ozone-exposed conidia. The inverse relationship between appressorium formation and level of polyamines implies that ozone-mediated increase in intracellular level of polyamines may inhibit appressorium formation in rice blast fungus. Furthermore, rice plants inoculated with ozone-fumigated conidia exhibited less severe disease development than those with unfumigated conidia. This result suggests that the anti-conidial consequence of acute ozone will eventually weaken the rice blasts potential for multiple infection cycle. This further suggests that consequently, rice blast can be transformed from an explosive disease to one that has limited epidemiological potential in the field.

Keywords

References

  1. Beare, J. A., Archer, S. A. and Bell, J. N. B. 1999. Marssoninaleafspot disease of poplar under elevated ozone: pre-fumigatedhost and in vitro studies. Environ. Pollut. 105:409-417 https://doi.org/10.1016/S0269-7491(99)00034-2
  2. Bors, W., Langebartels, C., Michel, C. and Sandermann, H. 1989.Polyamines as radical scavengers and protectants againstozone damage. Phytochemistry 28:1589-1595 https://doi.org/10.1016/S0031-9422(00)97805-1
  3. Choi, W. B., Kang, S. H., Lee, Y. W. and Lee, Y. H. 1998. CyclicAMP restores appressorium formation inhibited by poly-amines in Magnaporthe grisea. Phytopathology 88:58-62 https://doi.org/10.1094/PHYTO.1998.88.1.58
  4. Dowding, P. 1988. Air pollutant effects on plant pathogens. In: AirPollution and Plant Metabolism, ed. by S. Schulte-Hostede,N. M. Darrall, L. W. Blank and A. R. Wellbum, PP. 329-380.Elsevier Applied Science, London, UK
  5. Hamer, J. E. and Givan, S. 1990. Genetic mapping with dispersedrepeated sequence in the rice blast fungus: Mapping the SMO locus. Mol. Gen. Genet. 223:487-495
  6. Heagle, A. S. 1973. Interactions between air pollutants and plantparasites. Annu. Rev. Phytopathol. 11:365-488 https://doi.org/10.1146/annurev.py.11.090173.002053
  7. Heagle, A. S. 1982. Interactions between air pollutants and para-sitic plant diseases. In: Effects of Gaseous Air Pollution inAgriculture and Horticulture, ed. by M. H. Unsworth and D. P.Ormrod, pp. 333-348. Butterworths, London, UK
  8. Heagle, A. S. 1989. Ozone and crop yield. Annu. Rev. Phy-tophathol. 27:397-423 https://doi.org/10.1146/annurev.py.27.090189.002145
  9. Hoch, H. C., Staples, R. C., Whitehead, B., Comeu, J. and Wolf,E. D. 1987. Signaling for growth orientation and cell differen-tiation by surface topography in Uromyces. Science 235:1659-1662 https://doi.org/10.1126/science.235.4796.1659
  10. Hur, J.-S., Kim, K. W., Kim, P. G., Yun, S. C. and Park. E. W.2000. Effects of atmospheric ozone on the rice blast pathogenMasnaporthe grisea. Plant Pathol. J. 16:19-24
  11. Igarashi, L., Sakamoto, L., Goto, N., Kashiwaki, K., Homma, R.and Hirose, S. 1982. Interaction between polyamines andnucleic acids or phospholipids. Arch. Biochem. Biophy. 219:438-443 https://doi.org/10.1016/0003-9861(82)90175-8
  12. Khurana, N., Saxena, P. K., Gupta, R. and Rajam, M. V. 1996.Polyamines as modulators of microcycle conidiation in Asper-gillus flavus. Microbiology 142:517-523 https://doi.org/10.1099/13500872-142-3-517
  13. Laurence, J. A. 1981. Effects of air pollutants on plant-pathogeninteractions. Z. Pflanzenkrankh. Pflanzensch. 88:156-172
  14. Lee, Y. H. and Dean, R. A. 1993. cAMP regulates infection struc-ture formation in the plant pathogenic fungus Magnaporthegrisea. Plant Cell 5:693-700 https://doi.org/10.1105/tpc.5.6.693
  15. Manning, W. J. and Von Tiedemann, A. 1995. Climate change:potential effects of increased atmospheric carbon dioxide($CO_2$), ozone ($O_3$), and ultraviolet-B (UV-B) radiation on plantdisease. Environ. Pollut. 88:219-245 https://doi.org/10.1016/0269-7491(95)91446-R
  16. Miller, J. E. 1987. Effects on photosynthesis, carbon allocationand plant growth associated with air pollutant stress. In:Assessment of Crop Loss from Air Pollutants, ed. By W. W.Heck, O. C. Tingey and D. T. Tingey, pp. 287-314. ElsevierApplied Science, London, UK
  17. Mitchell, T. K. and Dean, R. A. 1995. The cAMP-dependent protein kinase catalytic subunit is required for appressorium for-mation and pathogenicity by the rice blast pathogen Magna-porthe grisea. Plant Cell 7:1869-1878 https://doi.org/10.1105/tpc.7.11.1869
  18. Orlowski, M. 1995. Gene expression in Mucor dimorphism. Can.J. Bot. 73:326-334 https://doi.org/10.1139/b95-263
  19. Ou, S. U. 1985. Rice disease. The Cambrian News Ltd., Abery-stwyth, UK.pp.132
  20. Podila, G. K., Rogers, L. M. and Kolattukudy, P. E. 1993. Chemi-cal signals from avocado surface wax trigger germination andappressorial formation in Colletotrichum gloeosporioides.Plant Physiol. 103:267-272 https://doi.org/10.1104/pp.103.1.267
  21. Reyna-Lopez, G. and Ruiz-Herrera, J. 1993. Polyamines and the phorogenesis of Mucorales. Fungal Genet. Biol. 17:79-89
  22. Rusch, H. and Laurence, J. A. 1993. Interactive effects of ozoneand powdery mildew on pea seedlings. Phytopathology 83:1258-1263 https://doi.org/10.1094/Phyto-83-1258
  23. Smith, T. A. 1985. Polyamines. Annu. Rev. Plant Physiol. 36:117-143 https://doi.org/10.1146/annurev.pp.36.060185.001001
  24. Tarhanen, S., Holopainen, T. and Oksanen, J. 1997. Ultrastruc-tural changes and electrolyte leakage from ozone fumigatedepiphytic lichens. Ann. Bot. 80:611-621 https://doi.org/10.1006/anbo.1997.0480
  25. Tiburico, A. F., Kaur-Sawhney, R., Ingersoll and R. Galston, A.W. 1985. Correlation between polyamines and pyrrolidinealkaoids in developing tobacco callus. Plant Physiol. 78:323-326 https://doi.org/10.1104/pp.78.2.323
  26. Wellburn, F. A. M. and Wellburn, A. R. 1996. Variable patterns ofantioxidant protection but similar ethane emission differencesin several ozone-sensitive and ozone-tolerant plant selections.Plant Cell Environ. 19:754-760 https://doi.org/10.1111/j.1365-3040.1996.tb00411.x
  27. Yun, S. C., Park, E. W. and Jang, Y. K. 1999. Tropospheric ozonepatterns in the metropolitan Seoul area during 1990-1997using several ozone indices for protection of vegetation. J.Kor. Air Pollu. Res. Assoc. 15:429-439 (in Korean)