Browse > Article
http://dx.doi.org/10.4062/biomolther.2009.17.1.32

Inhibitory Effects of Dihydrexidine on Catecholamine Release from the Rat Adrenal Medulla  

Lee, Jae-Hwang (Department of Anesthesiology and Pain Medicine, College of Medicine, Chosun University Hospital)
Lim, Hyo-Jeong (Department of Internal Medicine, Seoul National University)
Lim, Dong-Yoon (Department of Pharmacology, Chosun University)
Publication Information
Biomolecules & Therapeutics / v.17, no.1, 2009 , pp. 32-42 More about this Journal
Abstract
The purpose of the present study was to examine the effect of dihydrexidine, a full $D_1$ receptor agonist, on the secretion of catecholamines (CA) from the perfused model of the rat adrenal gland, and to establish its mechanism of action. Dihydrexidine (10-100 ${\mu}M$), perfused into an adrenal vein for 60 min, relatively produced dose- and time-dependent inhibition in the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM), DMPP (100 ${\mu}M$) and McN-A-343 (100 ${\mu}M$). Dihydrexidine itself did fail to affect basal CA output. Also, in adrenal glands loaded with dihydrexidine (30 ${\mu}M$), the CA secretory responses evoked by Bay-K-8644 (10 ${\mu}M$), an activator of L-type $Ca^{2+}$ channels, cyclopiazonic acid (10 ${\mu}M$), an inhibitor of cytoplasmic $Ca^{2+}$-ATPase, and veratridine, an activator of voltage-dependent $Na+$ channels (10 ${\mu}M$), were also markedly inhibited, respectively. However, in the simultaneous presence of dihydrexidine (30 ${\mu}M$) and R (+)-SCH23390 (a selective antagonist of $D_1$ receptor, 3 ${\mu}M$), the CA secretory responses evoked by ACh, high K+, DMPP, McN-A-343, Bay-K-8644, cyclopiazonic acid and veratridine were considerably recovered to the extent of the corresponding control secretion compared with the inhibitory responses by dihydrexidinetreatment alone. In conclusion, these experimental results suggest that dihydrexidine significantly inhibits the CA secretion evoked by cholinergic stimulation (both nicotinic and muscarinic receptors) and membrane depolarization from the rat adrenal medulla. It seems that this inhibitory effect of dihydrexidine may be mediated by inhibiting influx of both $Ca^{2+}$ and $Na^+$ into the cytoplasm as well as by suppression of $Ca^{2+}$ release from cytoplasmic calcium store through activation of dopaminergic $D_1$ receptors located on the rat adrenomedullary chromaffin cells.
Keywords
Dihydrexidine; Dopamine $D_1$ receptors; Adrenal medulla; Catecholamine secretion;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Anton, A. H. and Sayre, D. F. (1962). A study of the factors affec ting the aluminum oxidetrihydroxy indole procedure for the analysis of catecholamines. J. Pharmacol. Exp. Ther. 138, 360-375
2 Artalejo, A. R., Ariano, M. A., Perlman, R. L. and Fox, A. P. (1990). Activation of facilitation calcium channels in chromaffin cells by D1 dopamine receptors through a AMP/protein Kinase A-dependent mechanism. Nature 348, 239-242   DOI   ScienceOn
3 Brewster, W. K., Nichols, D. E., Riggs, R. M., Mottola, D. M., Lovenberg, T. W., Lewis, M. H. and Mailman, R. B. (1990). Trans-10,11-dihydroxy-5,6,6a,7,8,12b-hexahydrobeno[a]-phenanthridine: a highly potent selective dopamine D1 full agonist. J. Med. Chem. 33, 1756-1764   DOI
4 Catterall, W. A. (1992). Cellular and molecular biology of voltage-gated sodium channels. Physiol. Rev. 72(4 Suppl), S15-48   DOI
5 Challiss, R. A., Jones, J. A., Owen, P. J. and Boarder, M. R. (1991). Changes in inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate mass accumulations in cultured adrenal chromaffin cells in response to bradykinin and histamine. J. Neurochem. 56, 1083-1086   DOI
6 Cheek, T. R., O'Sullivan, A. J., Moreton, R. B., Berridge, M. J. and Burgoyne, R. D. (1989). Spatial localization of the stimulus-induced rise in cyrosolic $Ca^{2+}$ in bovine adrenal chromaffin cells: Distinct nicotinic and muscarinic patterns. FEBS. Lett. 247, 429-434   DOI   ScienceOn
7 Felder, C. C., Blecher, M. and Jose, P. A. (1989). Dopamine-1 mediated stimulation of phospholipase C activity in rat renal cortical membranes. J. Biol. Chem. 264, 8739-8745
8 Garcia, A. G., Sala, F., Reig, J. A., Viniegra, S., Frias, J., Fonteriz, R. and Gandia, L. (1984). Ihydropyridine Bay-K-8644 activates chromaffin cell calcium channels. Nature 309, 69-71   DOI   ScienceOn
9 Ghosh, A. and Greenberg, M. E. (1995). Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science. 268, 239-247   DOI
10 Gleason, S. D. and Witkin, J. M. (2004). Effects of dopamine $D_1$ receptor full agonists in rats trained to discriminate SKF 38393. Behav. Pharmacol. 15, 85-89   DOI   ScienceOn
11 Sawaguchi, T. and Goldman-Rakic, P. S. (1991). D1 dopamine receptors in prefrontal cortex: Involvement in working memory. Science. 251, 947-950   DOI
12 Goeger, D. E. and Riley, R. T. (1989). Interaction of cyclopiazonic acid with rat skeletal muscle sarcoplasmic reticulum vesicles. Effect on $Ca^{2+}$ binding and $Ca^{2+}$ permeability. Biochem. Pharmacol. 38, 3995-4003   DOI   ScienceOn
13 Hammer, R. and Giachetti, A. (1982). Muscarinic receptor subtypes: $M_1$ and $M_2$ biochemical and functional characterization. Life Sci. 31, 2992-2998   DOI   ScienceOn
14 Holz, R. W., Senter, R. A. and Frye, R. A. (1982). Relationship between $Ca^{2+}$ uptake and catecholamine secretion in primary dissociated cultures of adrenal modulla. J. Neurochem. 39, 635-640   DOI
15 Lim, D. Y., Kim, C. D. and Ahn, K. W. (1992). Influence of TMB-8 on secretion of catecholamines from the perfused rat adrenal glands. Arch. Pharm. Res. 15, 115-125   DOI
16 Andersen, P. H. and Jansen, J. A. (1990). Dopamine receptor agonists: Selectivity and D1 receptor efficacy. Eur. J. Pharmacol. 188, 335-347   DOI   ScienceOn
17 Schechter, M. D. (1995). The discriminative properties of the D1 dopamine agonist dihydrexidine in the rat. Psychopharmacology. 119, 79-84   DOI
18 Schoors, D. F., Vauquelin, G. P., De Vos, H., Smets, G., Velkeniers, B., Vanhaelst, L. and Dupont, A. G. (1991). Identification of a $D_1$ dopamine receptor, not linked to adenylate cyclase, on lactotroph cells. Br. J. Pharmacol. 103, 1928-1934   DOI   ScienceOn
19 Suzuki, M., Muraki, K., Imaizumi, Y. and Watanabe, M. (1992). Cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum $Ca^{2+}$-pump, reduces $Ca^{2+}$-dependent $K^+$ currents in guinea-pig smooth muscle cells. Br. J. Pharmacol. 107, 134-140   DOI   ScienceOn
20 Seidler, N. W., Jona, I., Vegh, N. and Martonosi, A. (1989). Cyclopiazonic acid is a specific inhibitor of the $Ca^{2+}$-ATPase of sarcoplasimc reticulum. J. Biol. Chem. 264, 17816-17823
21 Swope, S. L., Moss, S. J., Blackstone, C. D. and Huganir, R. L. (1992). Phosphorylation of ligand-gated ion channels: a possible mode of synaptic plasticity. FASEB J. 6, 2514-2523   DOI
22 Tallarida, R. J. and Murray, R. B. (1987). Manual of pharmacologic calculation with computer programs. 2nd ed. pp. 132. Speringer-Verlag, New York
23 Dahmer, M. K. and Senogles, S. E. (1996a). Differential inhibition of secretagogue-stimulated sodium uptake in adrenal chromaffin cells by activation of $D_4$ and $D_5$ dopamine receptors. J. Neurochem. 67, 1960-1964   DOI   ScienceOn
24 Damase-Michel, C., Montastruc, J. L. and Tran, M. A. (1995). Effects of dopaminergic drugs on the sympathoadrenal system. Hypertens. Res. 18(Suppl 1), S119-124   DOI
25 Williams, G. V. and Goldman-Rakic, P. S. (1995). Blockade of dopamine $D_1$ receptors enhances memory fields of prefrontal neurons in primate cerebral cortex. Nature 376, 572-575   DOI   ScienceOn
26 McGehee, D. S. and Role, L. W. (1995). Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annu. Rev. Physiol. 57, 521-546   DOI   ScienceOn
27 Dahmer, M. K. and Senogles, S. E. (1996b). Doparminergic inhibition of catecholamine secretion from chromaffin cells: Evidence that inhibition is mediated by $D_4$ and $D_5$ dopamine receptors. J. Neurochem. 66, 222-232   DOI   ScienceOn
28 Lim, D. Y., Yoon, J. K. and Moon, B. (1994). Interrelationship between dopaminergic receptors and catecholamine secretion from the rat adrenal gland. Korean J. Pharmacol. 30, 87-100   과학기술학회마을
29 Lovenberg, T. W., Brewster, W. K., Mottola, D. M., Lee, R. C., Riggs, R. M., Nichols, D. E., Lewis, M. H. and Mailman, R. B. (1989). Dihydrexidine, a novel selective high potency full dopamine D-1 receptor agonist. Eur. J. Pharmacol. 166, 111-113   DOI   ScienceOn
30 Gleason, S. D. and Witkin, J. M. (2006). Effects of dopamine $D_1$ receptor agonists in rats trained to discriminate dihydrexidine. Psychopharmacology (Berl) 186, 25-31   DOI   ScienceOn
31 Wada, A., Takara, H., Izumi, F., Kobayashi, H. and Yanagihara, N. (1985). Influx of $^{22}Na$ through acetylcholine receptor associated Na channels: relationship between $^{22}Na$ influx, $^{45}Ca$ influx and secretion of catecholamines in cultured bovine adrenal medulla cells. Neuroscience 15, 283-292   DOI   ScienceOn
32 Undie, A. S. and Friedman, E. (1990). Stimulation of a dopamine D1 receptor enhances inositol phosphates formation in rat brain. J. Pharmacol. Exp. Ther. 253, 987-992
33 Villanueva, M. and Wightman, R. M. (2007). Facilitation of quantal release induced by a D1-like receptor on bovine chromaffin cells. Biochemistry 46, 3881-3887   DOI   ScienceOn
34 Wakade, A. R. (1981). Studies on secretion of catecholamines evoked by acetylcholine or transmural stimulation of the rat adrenal gland. J. Physiol. 313, 463-480   DOI
35 Albillos, A., Abad, F. and Garcia, A. G. (1992). Cross-talk between M2 muscarinic and D1 dopamine receptors in the cat adrenal medulla. Biochem. Biophys. Res. Commun. 183, 1019-1024   DOI   ScienceOn
36 Catterall, W. A. (2000). From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26, 13-25   DOI   ScienceOn
37 Seamans, J. K., Floresco, S. B. and Phillips, A. G. (1995). Selective impairment on a delayed radial arm task following local administration of a $D_1$, but not a $D_1$, antagonist into the prefrontal cortex. Soc. Neurosci. Abstr. 21, 1942