• 제목/요약/키워드: Cylindrical Shell Structure

검색결과 161건 처리시간 0.027초

풍력발전 타워용 원형단면 강재 쉘의 극한휨강도 (Ultimate Flexural Strength of Cylindrical Steel Shell for Wind Tower)

  • 안준태;신동구
    • 한국강구조학회 논문집
    • /
    • 제27권1호
    • /
    • pp.109-118
    • /
    • 2015
  • 풍력발전 타워용 원형단면 강재 쉘에 대하여 재료 및 기하학적 비선형 유한요소법으로 극한휨강도 해석을 수행하였다. 쉘의 기하학적 초기변형, 반경 대 두께비, 적용 강종 등이 극한휨강도에 미치는 영향을 분석하였으며, Eurocode 3와 AISI 설계기준에 의한 설계휨강도와 유한요소해석으로 구한 극한휨강도를 비교하였다. 비선형 FE 해석에는 DNV-RP-C202에 제시된 쉘의 좌굴모드와 유로코드에 규정된 진원도 허용오차 및 용접에 의한 변형을 기하학적 초기 결함으로 고려하였다. 원통형 쉘의 반경 대 두께비는 60~210 범위를 고려하였으며 SM520과 HSB800 강재로 제작된 것으로 가정하였다.

보강재를 갖는 원통셸 구조물의 진동해석 알고리즘의 개발에 관한 연구 (On Development of Vibrational Analysis Algorithm of Cylindrical Shell Structures With Stiffeners)

  • 문덕홍;여동준
    • 소음진동
    • /
    • 제6권4호
    • /
    • pp.481-491
    • /
    • 1996
  • In this paper, we formulated algorithm for free vibration analysis of cylindrical shells with stiffeners by applying the transfer influence coefficient method. This was developed as a vibration analysis method suitable for using personal computer(PC). The simple computational results form PC demonstrated the validity of the present algorithm, that is, the computational high accuracy and speed, and the flexibility of programming. We compared with results of the transfer matrix method and the reference. We also confirmed that the present algorithm could provide the solutions of high accuracy for system with a lots of intermediate rigid supports and stiffeners. And all boundary conditions and the intermediate stiff supports between shell and foundation could be treated only by adequately varying the values of the spring constants.

  • PDF

Controlling of ring based structure of rotating FG shell: Frequency distribution

  • Hussain, Muzamal
    • Advances in concrete construction
    • /
    • 제14권1호
    • /
    • pp.35-43
    • /
    • 2022
  • Based on novel Galerkin's technique, the theoretical study gives a prediction to estimate the vibrations of FG rotating cylindrical shell. Terms of ring supports have been introduced by a polynomial function. Three different laws of volume fraction are utilized for the vibration of cylindrical shells. Variation frequencies with the locations of ring supports have been analyzed and these ring supports are placed round the circumferential direction. The base of this approach is an approximate estimation of eigenvalues of proper functions which are the results of solutions of vibrating equation. Each longitudinal wave number corresponds to a particular boundary condition. The results are given in tabular and graphical forms. By increasing different value of height-to-radius ratio, the resulting backward and forward frequencies increase and frequencies decrease on increasing length-to-radius ratio. There is a new form of frequencies is obtained for different positions of ring supports, which is bell shaped. Moreover, on increasing the rotating speed, the backward frequencies increases and forward frequencies decreases.

유체로 채워진 원통형 쉘의 고유진동수에미치는 수위의 영향 (The Effect of Liquid Level on the Natural Frequencies of a Partially Liquid-Filled Circular Cylindrical Shell)

  • 정경훈;이성철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.314-319
    • /
    • 1995
  • The effect of liquid level on the natural frequencies and mode shapes of a partially liquid-filled circular cylindrical shell with various boundary conditions is investigated by means of a theoretical analysis based upon Fourier series expansion method and a finite element analysis using ANSYS computer program. Two dimensional mode shapes of the liquid-coupled shell structure are obtained by the ANSYS finite element analysis and show that the liquid level affect the nodal point movement. It is found that the variation of normalized naturalfrequencies (natural frequencies of liquid-filled shell/antural frequencies ofempty shell) to the liquid level is depend on the axial mode numbers and circumferential wave numbers. Additionally, it is found that the number of variational steps of normalized natural frequencies is identicial to that of axial nodal points of the mode shape.

  • PDF

구리 나노와이어의 구조적 특성에 관한 연구 (A study on structural properties of copper nanowires)

  • 강정원;권오근;황호정
    • 한국진공학회지
    • /
    • 제11권1호
    • /
    • pp.59-67
    • /
    • 2002
  • 본 연구에서는 분자동력학 시뮬레이션을 이용하여 구리 나노와이어의 구조적 특성에 관하여 연구하였다. 매우 가는 구리 나노와이어의 구조는 면심입방격자 구조와는 다른 원통형 다중 껍질 구조를 가지며 상온에서 안정한 구조를 유지하였다. 원통형 다중껍질 나노기둥 및 나노와이어 확장 변형에 따른 장력의 변화에 관한 연구에서 오각형 NLC(needle-like crystal) 구조가 관찰되었다. 오각형 NLC 나노와이어 구조의 특성은 기본구성단위가 면심입방격자 구조이므로 안정된 구조라는 것을 연구하였다.

Vibration and Noise Control of Structural Systems Using Squeeze Mode ER Mounts

  • Jeong, Weui-Bong;Yoo, Wan-Suk;Jung, Woo-Jin
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.1949-1960
    • /
    • 2003
  • This paper presents vibration and noise control of flexible structures using squeeze mode electro-rheological mounts. After verifying that the damping force of the ER mount can be controlled by the intensity of the electric fild, two different types of ER squeeze mounts have been devised. Firstly, a small size ER mount to support 3 kg is manufactured and applied to the frame structure to control the vibration. An optimal controller which consists of the velocity and the transmitted force feedback signals is designed and implemented to attenuate both the vibration and the transmitted forces. Secondly, a large size of ER mount to support 200 kg is devised and applied to the shell structure to reduce the radiated noise. Dynamic modeling and controller design are undertaken in order to evaluate noise control performance as well as isolation performance of the transmitted force. The radiated noise from the cylindrical shell is calculated by SYSNOISE using forces which are transmitted to the cylindrical shell through two-stage mounting system.

Vibration analysis of double-bonded micro sandwich cylindrical shells under multi-physical loadings

  • Yazdani, Raziye;Mohammadimehr, Mehdi;Zenkour, Ashraf M.
    • Steel and Composite Structures
    • /
    • 제33권1호
    • /
    • pp.93-109
    • /
    • 2019
  • In the present study, vibration analysis of double bonded micro sandwich cylindrical shells with saturated porous core and carbon/boron nitride nanotubes (CNT/BNNT) reinforced composite face sheets under multi-physical loadings based on Cooper-Naghdi theory is investigated. The material properties of the micro structure are assumed to be temperature dependent, and each of the micro-tubes is placed on the Pasternak elastic foundations, and mechanical, moisture, thermal, electrical, and magnetic forces are effective on the structural behavior. The distributions of porous materials in three distributions such as non-linear non-symmetric, nonlinear-symmetric, and uniform are considered. The relationship including electro-magneto-hydro-thermo-mechanical loadings based on modified couple stress theory is obtained and moreover the governing equations of motion using the energy method and the Hamilton's principle are derived. Also, Navier's type solution is also used to solve the governing equations of motion. The effects of various parameters such as material length scale parameter, temperature change, various distributions of nanotube, volume fraction of nanotubes, porosity and Skempton coefficients, and geometric parameters on the natural frequency of double bonded micro sandwich cylindrical shells are investigated. Increasing the porosity and the Skempton coefficients of the core in micro sandwich cylindrical shell lead to increase the natural frequency of the structure. Cylindrical shells and porous materials in the industry of filters and separators, heat exchangers and coolers are widely used and are generally accepted today.

Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions

  • Madani, Hamid;Hosseini, Hadi;Shokravi, Maryam
    • Steel and Composite Structures
    • /
    • 제22권4호
    • /
    • pp.889-913
    • /
    • 2016
  • Vibration analysis of embedded functionally graded (FG)-carbon nanotubes (CNT)-reinforced piezoelectric cylindrical shell subjected to uniform and non-uniform temperature distributions are presented. The structure is subjected to an applied voltage in thickness direction which operates in control of vibration behavior of system. The CNT reinforcement is either uniformly distributed or functionally graded (FG) along the thickness direction indicated with FGV, FGO and FGX. Effective properties of nano-composite structure are estimated through Mixture low. The surrounding elastic foundation is simulated with spring and shear constants. The material properties of shell and elastic medium constants are assumed temperature-dependent. The motion equations are derived using Hamilton's principle applying first order shear deformation theory (FSDT). Based on differential cubature (DC) method, the frequency of nano-composite structure is obtained for different boundary conditions. A detailed parametric study is conducted to elucidate the influences of external applied voltage, elastic medium type, temperature distribution type, boundary conditions, volume percent and distribution type of CNT are shown on the frequency of system. In addition, the mode shapes of shell for the first and second modes are presented for different boundary conditions. Numerical results indicate that applying negative voltage yields to higher frequency. In addition, FGX distribution of CNT is better than other considered cases.

원통형 복합재 격자구조체의 구조안전성 평가 기법 연구 (Study on Evaluation Method of Structural Integrity of Cylindrical Composite Lattice Structures)

  • 임재문;강승구;신광복;이상우
    • Composites Research
    • /
    • 제30권6호
    • /
    • pp.338-342
    • /
    • 2017
  • 본 논문에서는 원통형 복합재 격자구조체의 구조안전성 평가 기법에 대해 연구를 수행하였다. 구조안전성 평가는 유한요소해석을 통해 수행하였다. 구조안전성 평가를 위한 최적의 유한요소를 확인하기 위해 원통형 복합재 격자구조체 유한요소모델은 빔, 쉘 그리고 솔리드 요소를 사용해 생성하였다. 쉘과 솔리드 모델의 유한요소 해석결과는 서로 유사하게 발생되었다. 그러나 빔 모델의 경우, 쉘과 솔리드 모델의 결과와 큰 차이가 발생하였다. 이것은 빔 요소가 원통형 복합재 격자구조체 섬유 비교차부의 기계적 물성저하를 고려하지 못하기 때문이다. 원통형 복합재 격자구조체의 구조안전성 평가를 위한 유한요소해석은 쉘 또는 솔리드 요소를 사용해야 하는 것을 확인하였다.

Free vibration analysis of thick cylindrical MEE composite shells reinforced CNTs with temperature-dependent properties resting on viscoelastic foundation

  • Mohammadimehr, Mehdi;Arshid, Ehsan;Alhosseini, Seyed Mohammad Amin Rasti;Amir, Saeed;Arani, Mohammad Reza Ghorbanpour
    • Structural Engineering and Mechanics
    • /
    • 제70권6호
    • /
    • pp.683-702
    • /
    • 2019
  • The present study aims to analyze the magneto-electro-elastic (MEE) vibration of a functionally graded carbon nanotubes reinforced composites (FG-CNTRC) cylindrical shell. Electro-magnetic loads are applied to the structure and it is located on an elastic foundation which is simulated by visco-Pasternak type. The properties of the nano-composite shell are assumed to be varied by temperature changes. The third-order shear deformation shells theory is used to describe the displacement components and Hamilton's principle is employed to derive the motion differential equations. To obtain the results, Navier's method is used as an analytical solution for simply supported boundary condition and the effect of different parameters such as temperature variations, orientation angle, volume fraction of CNTs, different types of elastic foundation and other prominent parameters on the natural frequencies of the structure are considered and discussed in details. Design more functional structures subjected to multi-physical fields is of applications of this study results.