A study on structural properties of copper nanowires

구리 나노와이어의 구조적 특성에 관한 연구

  • 강정원 (중앙대학교 전자공학과) ;
  • 권오근 (세명대학교 인터넷정보학부) ;
  • 황호정 (중앙대학교 전자공학과)
  • Published : 2002.04.01

Abstract

The structures and properties of Cu nanowires have been investigated using molecular dynamics simulations. Cylindrical multi-shell Cu nanowires maintain their structures at room temperature and their structural properties are different from the structural properties of nanowires with face-centered-cubic structure. The results from nanopillar and tensile testing of cylindrical multi-shell Cu nanowire showed structures related to pentagonal needle-like crystal structures. Since the subunits of pentagonal nanowire with needle-like crystal are face-centered-cubic structure, pentagonal multi-shell nanowires are stable one-dimensional structures in nanostructured materials.

본 연구에서는 분자동력학 시뮬레이션을 이용하여 구리 나노와이어의 구조적 특성에 관하여 연구하였다. 매우 가는 구리 나노와이어의 구조는 면심입방격자 구조와는 다른 원통형 다중 껍질 구조를 가지며 상온에서 안정한 구조를 유지하였다. 원통형 다중껍질 나노기둥 및 나노와이어 확장 변형에 따른 장력의 변화에 관한 연구에서 오각형 NLC(needle-like crystal) 구조가 관찰되었다. 오각형 NLC 나노와이어 구조의 특성은 기본구성단위가 면심입방격자 구조이므로 안정된 구조라는 것을 연구하였다.

Keywords

References

  1. Phys. Rev. B v.47 N. Agrait;J. G. Rodrigo;S. Vieira https://doi.org/10.1103/PhysRevB.47.12345
  2. Phys. Rev. Lett. v.71 J. I. Pascual;J. Mendez;J. Gomez-Herrero;A. M. Baro;N. Garcia;V. T. Binh https://doi.org/10.1103/PhysRevLett.71.1852
  3. Phys. Rev. Lett. v.72 L. Olesen;E. Laegsgaard;I. Stensgaard;F. Besenbacher;J. Schiotz;P. Stoltze;K. W. Hacobsen;J. K. Norskov https://doi.org/10.1103/PhysRevLett.72.2251
  4. Nature v.375 J. M. Kran;J. M. van Ruitenbeek;V. V. Fisun;J. K. Yan;L. J. de Jongh https://doi.org/10.1038/375767a0
  5. Phys. Rev. Lett. v.79 Y. Kondo;K. Takayanagi https://doi.org/10.1103/PhysRevLett.79.3455
  6. Nature v.395 H. Ohnishi;Y. Kondo;K. Takayanagi https://doi.org/10.1038/27399
  7. Science v.289 Y. Kondo;K. Takayanagi https://doi.org/10.1126/science.289.5479.606
  8. Phys. Rev. Lett. v.85 V. Rodrigues;T. Fuhrer;D. Ugarte https://doi.org/10.1103/PhysRevLett.85.4124
  9. J. Phys.: Condens. Matter v.14 J. W. Kang;H. J. Hwang
  10. J. Vac. Sci. Technol. A v.18 W. S. Yun;J. Kim;K. H. Park;J. S. Ha;Y. J. Ko;K. Park;S. K. Kim;Y. J. Doh;H. J. Lee;J. P. Salvetat;Laszlo Forro https://doi.org/10.1116/1.582349
  11. Phys. Rev. Lett. v.86 B. Wang;S. Yin;G. Wang;A. Buldum;J. Zhao https://doi.org/10.1103/PhysRevLett.86.2046
  12. Phys. Rev. B v.58 G. Bilalbegoviae https://doi.org/10.1103/PhysRevB.58.15412
  13. Science v.291 E. Tosatti;S. Prestipino;S. Kostlmeier;A. Dal Corso;F. D. Di Tolla https://doi.org/10.1126/science.291.5502.288
  14. Solid State Comm. v.115 G. Bilalbegoviae https://doi.org/10.1016/S0038-1098(00)00149-6
  15. Surf. Sci. v.426 J. A. Torres;E. Tosatti;A. Dal Corso;F. Ercolessi;J. J. Kohanoff;F. D. Di Tolla;J. M. Soler https://doi.org/10.1016/S0039-6028(99)00333-7
  16. Comp. Mater. Sci. v.18 G. Bilalbegoviae https://doi.org/10.1016/S0927-0256(00)00113-0
  17. Nature v.360 R. Tenne;L. Margulis;M. Genut;G. Hodes https://doi.org/10.1038/360444a0
  18. Nature v.365 L. Margulis;G. Salitra;R. Tenne;M. Tallenker
  19. Nature v.395 Y. R. Hacohen;E. Grunbaum;R. Tenne;M. Tallenker https://doi.org/10.1038/26380
  20. Phys. Rev. Lett. v.80 O. Gulseren;F. Erolessi;E. Tosatti https://doi.org/10.1103/PhysRevLett.80.3775
  21. Surf. Sci. v.456 F. Di Tolla;A. Dal Corse;J. A. Torres;E. Tosatti https://doi.org/10.1016/S0039-6028(00)00282-X
  22. Phys. Rev. B v.51 O. Gulseren;F. Erolessi;E. Tossatti https://doi.org/10.1103/PhysRevB.51.7377
  23. Mol. Phys. v.92 G. M. Finbow;R. M. Lynden-Bell;I. R. McDonald https://doi.org/10.1080/002689797169989
  24. J. Phys.: Condens. Matter v.13 B. Wang;S. Yin;G. Wang;J. Zhao https://doi.org/10.1088/0953-8984/13/20/102
  25. J. Korean Phys. Soc. v.40 H. J. Hwang;J. W. Kang
  26. Phys. Rev. Lett. v.83 M. Menon;E. Richter https://doi.org/10.1103/PhysRevLett.83.792
  27. Phys. Rev. Lett. v.85 U. Landman;R. N. Barnett;A. G. Scherbakov;P. Avouris https://doi.org/10.1103/PhysRevLett.85.1958
  28. Phys. Rev. B v.60 K. Michaclian;N. Rendon;I. L. Garzon https://doi.org/10.1103/PhysRevB.60.2000
  29. Phys. Rev. B v.60 F. J. Palacios;M. P. Iniguez;M. J. Lopez;J. A. Alonso https://doi.org/10.1103/PhysRevB.60.2908
  30. Phys. Rev. B v.53 L. Rongwu;P. Ahengying;H. Yukun https://doi.org/10.1103/PhysRevB.53.4156
  31. Phys. Lett. A v.267 T. X. Li;S. Y. Yin;Y. L. Ji;B. L. Wang;G. H. Wang;J. J. Zhao https://doi.org/10.1016/S0375-9601(00)00120-1
  32. J. Phys.: Condens. Matter v.13 H. Lei https://doi.org/10.1088/0953-8984/13/13/315
  33. J. Korean Phys. Soc. v.38 J. W. Kang;H. J. Hwang
  34. Nanotechnology v.12 J. W. Kang;H. J. Hwang https://doi.org/10.1088/0957-4484/12/3/317
  35. Phys. Rev. B v.48 F. Cleri;V. Rosato https://doi.org/10.1103/PhysRevB.48.22
  36. Computer simulation of liquids M. P. Allen;D. J. Tiledesley
  37. Phys. Rev. Lett. v.82 H. Ikeda;Y. Qi;T. Cagin;K. Samwer;W. L. Johnson;W. A. Goddard https://doi.org/10.1103/PhysRevLett.82.2900
  38. Phys. Rev. B v.56 H. Mehrez;S. Ciraci https://doi.org/10.1103/PhysRevB.56.12632
  39. Solid State Commu. v.107 U. Landman https://doi.org/10.1016/S0038-1098(98)00244-0
  40. Phys. Rev. B v.53 M. R. Sorensen;K. W. Jacobsen;P. Stoltze https://doi.org/10.1103/PhysRevB.53.2101
  41. Inter. J. Mech. Sci. v.43 R. Komanduri;N. Chandrasekaran;L. M. Raff https://doi.org/10.1016/S0020-7403(01)00043-1
  42. Phys. Rev. Lett. v.84 V. B. Shenoy;R. V. Kukta;R. Phillips https://doi.org/10.1103/PhysRevLett.84.1491
  43. Phys. Rev. B v.61 I. Lisiecki;A. Filankembo;H. Sack-Kongehl;K. Weiss;M.-P. Pileni;J. Urban https://doi.org/10.1103/PhysRevB.61.4968
  44. J. Cryst. Growth v.234 H. Hofmeister;S. A. Nepijiko;D. N. Ievlev;W. Schulze;G. Ertl https://doi.org/10.1016/S0022-0248(01)01757-2
  45. Cryst. Res. Technol. v.34 V. G. Gryaznov;H. Heydenreich;A. M Kaprelov;S. A. Nepijko;A. E. Romanov;J. Urban https://doi.org/10.1002/(SICI)1521-4079(199911)34:9<1091::AID-CRAT1091>3.0.CO;2-S
  46. J. Phys.: Condens. Matter v.14 F. Ding;H. Li;J. Wang;W. Shen;G. Wang https://doi.org/10.1088/0953-8984/14/1/310