• 제목/요약/키워드: Cylinder Lateral Compression

검색결과 9건 처리시간 0.02초

조합하중을 받는 해양구조물 원통부재의 최동강도 해석 (Utimate strength analysis of cylindrical members of offshore structure subject to combined loads)

  • 박치모
    • 한국해양공학회지
    • /
    • 제11권2호
    • /
    • pp.11-17
    • /
    • 1997
  • Simple and efficient way of nonlinear analysis considering elasto-plastic large deformation is introduced to calculate the strength of ring-stiffened cylinears subject to combined load of axial compression and lateral pressure. Parametric study gives various collapse modes according to the combination ratio of axial compression and lateral pressure, interaction between axial compression and lateral pressure and imperfection sensitivity of ultimate strength.

  • PDF

선조질강 소재의 단조공정 측면에서의 특징 (Characteristics of Pre-Heat Treated Steel for Application to Forging)

  • 엄재근;이추실;장성민;안순태;손요헌;현성운;김혁;윤덕계;전만수
    • 소성∙가공
    • /
    • 제18권6호
    • /
    • pp.453-457
    • /
    • 2009
  • In this paper, plastic deformation behaviors of ESW105 and SCM435 steels are revealed by simulations and experiments. ESW105 is the special pre-heat-treated steel characterized by high initial yield strength and negligible strain-hardening behavior. The flow stresses of the two steels for large stain are calculated from tensile tests. Axial and lateral compressions of cylindrical bars are tested and simulated and the deformed shapes are compared to characterize the plastic deformation behaviors of the two materials. A forward extrusion process of a cylindrical bar is also simulated to reveal the difference. It has been shown that there are pretty much difference in plastic flow between ESW105 and SCM435 which causes from the difference in strain-hardening capability, implying that the experience-oriented design rules for common commercial materials may lead to failure in process design when the new material of ESW105 is applied without consideration of its plastic deformation behavior.

선조질강 소재의 단조공정 측면에서의 특징 (Characteristics of Pre-Heat Treated Steel for Application to Forging)

  • 엄재근;이추실;장성민;안순태;손요헌;현성운;김혁;윤덕재;전만수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.48-51
    • /
    • 2009
  • In this paper, plastic deformation behaviors of ESW105 and SCM435 steels are revealed by simulations and experiments. ESW105 is the special pre-heat-treated steel characterized by high initial yield strength and negligible strain-hardening behavior. The flow stresses of the two steels for large stain are calculated from tensile tests. Axial and lateral compressions of cylindrical bars are tested and simulated and the deformed shapes are compared to characterize the plastic deformation behaviors of the two materials. A forward extrusion process of a cylindrical bar is also simulated to reveal the difference. It has been shown that there are pretty much difference in plastic flow between ESW105 and SCM435 which causes from the difference in strain-hardening capability, implying that the experience-oriented design rules for common commercial materials may lead to failure in process design when the new material of ESW105 is applied without consideration of its plastic deformation behavior.

  • PDF

Seismic behavior of Q690 circular HCFTST columns under constant axial loading and reversed cyclic lateral loading

  • Wang, Jiantao;Sun, Qing
    • Steel and Composite Structures
    • /
    • 제32권2호
    • /
    • pp.199-212
    • /
    • 2019
  • This paper presents an investigation on seismic behavior of out-of-code Q690 circular high-strength concrete-filled thin-walled steel tubular (HCFTST) columns made up of high-strength (HS) steel tubes (yield strength $f_y{\geq}690MPa$). Eight Q690 circular HCFTST columns with various diameter-to-thickness (D/t) ratios, concrete cylinder compressive strengths ($f_c$) and axial compression ratios (n) were tested under the constant axial loading and reversed cyclic lateral loading. The obtained lateral load-displacement hysteretic curves, energy dissipation, skeleton curves and ductility, and stiffness degradation were analyzed in detail to reflect the influences of tested parameters. Subsequently, a simplified shear strength model was derived and validated by the test results. Finally, a finite element analysis (FEA) model incorporating a stress triaxiality dependent fracture criterion was established to simulate the seismic behavior. The systematic investigation indicates the following: compared to the D/t ratio and axial compression ratio, improving the concrete compressive strength (e.g., the HS thin-walled steel tube filled with HS concrete) had a slight influence on the ductility but an obvious enhancement of energy dissipation and peak load; the simplified shear strength model based on truss mechanism accurately predicted the shear-resisting capacity; and the established FEA model incorporating steel fracture criterion simulated well the seismic behavior (e.g., hysteretic curve, local buckling and fracture), which can be applied to the seismic analysis and design of Q690 circular HCFTST columns.

탄소섬유쉬트로 횡구속된 콘크리트의 강도 증진에 관한 연구 (A Study on theEnhancement of Strength of laterally Confined Concrete by Carbon-Fiber Sheet)

  • 정신욱;류천;김의성;김화일;김상섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.462-471
    • /
    • 1997
  • In this study, we studied the compression test of laterally confined concrete cylinder by the carbon-fiber sheet(CFS), and compared the test results with previous test results and relationships by other researchers. Our objectives is to find the stress-strain characteristics and the enhancement of strength of the confined concrete to the lateral pressure offered by CFS.

  • PDF

Energy absorption of foam-filled lattice composite cylinders under lateral compressive loading

  • Chen, Jiye;Zhuang, Yong;Fang, Hai;Liu, Weiqing;Zhu, Lu;Fan, Ziyan
    • Steel and Composite Structures
    • /
    • 제31권2호
    • /
    • pp.133-148
    • /
    • 2019
  • This paper reports on the energy absorption characteristics of a lattice-web reinforced composite sandwich cylinder (LRCSC) which is composed of glass fiber reinforced polymer (GFRP) face sheets, GFRP lattice webs, polyurethane (PU) foam and ceramsite filler. Quasi-static compression experiments on the LRCSC manufactured by a vacuum assisted resin infusion process (VARIP) were performed to demonstrate the feasibility of the proposed cylinders. Compared with the cylinders without lattice webs, a maximum increase in the ultimate elastic load of the lattice-web reinforced cylinders of approximately 928% can be obtained. Moreover, due to the use of ceramsite filler, the energy absorption was increased by 662%. Several numerical simulations using ANSYS/LS-DYNA were conducted to parametrically investigate the effects of the number of longitudinal lattice webs, the number of transverse lattice webs, and the thickness of the transverse lattice web and GFRP face sheet. The effectiveness and feasibility of the numerical model were verified by a series of experimental results. The numerical results demonstrated that a larger number of thicker transverse lattice webs can significantly enhance the ultimate elastic load and initial stiffness. Moreover, the ultimate elastic load and initial stiffness were hardly affected by the number of longitudinal lattice webs.

Constitutive Model for a Confined Concrete Cylinder with an Unbonded External Steel Jacket

  • Roh, Young-Sook
    • Architectural research
    • /
    • 제17권1호
    • /
    • pp.41-48
    • /
    • 2015
  • Early investigations focused mainly on manipulating the confinement effect to develop a reinforced concrete column with lateral hoops. Based on this legacy model, Li's model incorporated the additional confinement effect of a steel jacket. However, recent experiments on plain concrete cylinders with steel jackets revealed relatively large discrepancies in the estimates of strength enhancement and the post-peak behavior. Here, we describe a modified constitutive law for confined concrete with an unbonded external steel jacket in terms of three regions for the loading stage. We used a two-phase heterogeneous concrete model to simulate the uniaxial compression test of a $150mm{\times}300mm$ concrete cylinder with three thicknesses of steel jackets: 1.0 mm, 1.5 mm, and 2.0 mm. The proposed constitutive model was verified by a series of finite element analyses using a finite element program. The damaged plasticity model and extended Drucker-Prager model were applied and compared in terms of the level of pressure sensitivity for confinement in 3D. The proposed model yielded results that were in close agreement with the experimental results.

Partially confined circular members subjected to axial compression: Analysis of concrete confined by steel ties

  • Eid, R.;Dancygier, A.N.
    • Structural Engineering and Mechanics
    • /
    • 제21권6호
    • /
    • pp.737-765
    • /
    • 2005
  • This paper presents a theoretical model for the behavior of partially confined axi-symmetric reinforced concrete members subjected to axial load. The analysis uses the theories of elasticity and plasticity to cover the full range of the concrete behavior. Analysis of the elastic range of the problem involves boundary conditions that are defined along a relatively simple geometry. However, extending the analysis into the plastic range involves difficulties that arise from the irregular geometry of the boundary between the plastic zone and the elastic zone, a boundary which is also changing as the axial load increases. The solution is derived by replacing the discrete steel ties with an equivalent tube of thickness $t_{eq}$ and by analyzing the concrete cylinder, which is uniformly confined by the equivalent tube. The equivalency criterion initiates from a theoretical analysis of the problem in its elastic range where further finite element analysis shows that this criterion is valid also for the plastic range of the cylinder material. According to the proposed model, the efficiency of the lateral reinforcement can be evaluated by the equivalent thickness $t_{eq}$. Comparison with published test results of confined reinforced concrete stress-strain curves shows good agreement between the test and the analytical results.

FRP로 횡구속된 콘크리트의 응력-변형률 거동 특성 (Stress-Strain Behavior Characteristics of Concrete Cylinders Confined with FRP Wrap)

  • 이대형;김영섭;정영수
    • 콘크리트학회논문집
    • /
    • 제19권2호
    • /
    • pp.135-144
    • /
    • 2007
  • 최근에 노후화된 콘크리트 구조물의 보수 보강 방법으로 FRP를 이용한 보강이 효과적인 것으로 알려지고 있다. 본 연구의 목적은 FRP로 보강된 콘크리트 실린더의 거동을 실험적으로 조사하고자 하는 것이다. 실험 변수로는 콘크리트의 압축강도, FRP재료의 종류 및 구속비이다. 본 연구에서 아라미드, 탄소 및 유리섬유로 보강된 콘크리트의 성능을 압축강도 실험을 통한 연구 결과를 보이고 있다. 이를 위해 축방향 하중, 축방향 및 횡방향 변형률을 측정하였다. 본 연구를 통하여 콘크리트의 강도와 횡방향 변형률과 횡방향 구속응력의 비로 정의되는 구속비가 구속 콘크리트의 응력-변형률을 결정하는 주요 인자인 것으로 나타났다. FRP로 더 많은 보강을 한 실험체는 우수한 구속력으로 인한 강도의 증가를 야기하였다. 고강도 콘크리트의 경우 FRP에 의한 보강으로 구속력의 증가이 증가되더라도 실험체의 압축변형률이 감소하여 취성파괴의 경향을 보였다. 구속된 콘크리트의 파괴는 FRP 재료의 극한 변형률 보다 낮은 변형률에서 FRP의 파단으로 시작되어 콘크리트의 파괴에 도달하였다.