• Title/Summary/Keyword: Cyclooxygenase-2, 5-Lipoxygenase

Search Result 59, Processing Time 0.03 seconds

Action of Phospholipase $A_2$in Histamine Release from Mast Cells (비만세포에서 Histamine유리에 관여하는 Phospholipase $A_2$의 작용)

  • 이윤혜;이승준;서무현;장용운;윤정이
    • YAKHAK HOEJI
    • /
    • v.45 no.3
    • /
    • pp.287-292
    • /
    • 2001
  • To investigate whether phospholipase $A_2$pathway is involved in histamine release of rat peritoneal mast cells, we measured histamine release in the presence of various enzyme inhibitors involved in eicosanoid pathway, such as phospholipase $A_2$, cyclooxygenase and lipoxygenase. Phospholipase $A_2$inhibitors, manoalide and OPC, significantly inhibited histamine release induced by 100 $\mu$M ATP and 1$\mu$g/ml compound 48/80. Cyclooxygenase inhibitors, ibuprofen and indomethacin, significantly inhibited ATP-induced histamine release and lipoxygenase inhibitors, baicalein and caffeic acid, also significantly inhibited. To investigate the involvement of protein kinase in ATP- and compound 48/80-induced histamine release, we observed effects of protein kinase inhibitors on histamine release. Bisindolmaleimide (protein kinase C antagonist) dose-dependently inhibited both ATP and compound 48/80-induced histamine release. Tyrosine kinase inhibitors (methyl 2,5-dihydroxy cinnamate and genistein) dose-dependently inhibited ATP and compound 48/80-induced histamine release. Protein kinase C and tyrosine kinase seem to be involved in histamine release induced by ATP and compound 48/80. These results suggest that phospholipase $A_2$pathway as well as protein kinase C and tyrosine kinase are involved in histamine release of rat peritoneal mast cells by ATP and compound 48/80.

  • PDF

Anti-inflammatory Effect of Biotin and Plant extracts

  • Y. J. Joo;S. W. Jung;Kim, B. R.;Kim, I. Y.;Lee, J. D.;H. C. Ryoo;Lee, S. H.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.601-610
    • /
    • 2003
  • Biotin is a water-soluble vitamin used as a skin conditioning agent and promotes the formation of intercellular lipid layers through increased lipid synthesis, which improves the skin's natural barrier function. The anti-inflammatory effects of biotin have been investigated using in vitro assay models, such as MTT assay, measurements of concentrations of nitric oxide(NO), prostaglandin E2(PGE$_2$), and inhibition rate of 5-lipoxygenase(5-LOX). In comparison with biotin, other plant extracts were tested at the same time which were kudzu vine extract, sage extract, paeonia extract, and dipotassium glycyrrhetinate. Nitric oxide is a signal molecule with functions such as neurotransmission, local vascular relaxation, and anti-inflammation in many physiological and pathological processes. NO can cause apoptosis and necrosis of target cells such as keratinocytes and is generated from L-arginine by nitric oxide synthase (NOS). Prostanoids, including prostaglandins and thromboxanes, are generated by the phospholipase $A_2$/cyclooxygenase(COX) pathway, and leukotrienes are generated by the 5-lipoxygenase pathway from arachidonic acid. Prostaglandin E2 recently have been shown to be beneficial in the resolution of tissue injury and inflammation, also has been implicated as an immunosuppressive agent and plasma levels of PGE$_2$ are elevated in patients sustaining thermal injury. Lipoxygenase metabolites from arachidonic acid have been implicated in inflammation, anti-inflammatory activity of the raw materials was evaluated in vitro by the offered inhibition of lipoxygenase.

  • PDF

Analgesic Action Mechanism of DA-5018, a New Capsaicin Derivative : Relationship to Opiate :Receptors and Prostanoids (새로운 캅사이신 유도체 DA-5018의 진통활성 기전연구: Opiate 수용체 및 :Prostanoid와의 상관성)

  • 손미원;손문호;배은주;김순희;김원배;양중의
    • Biomolecules & Therapeutics
    • /
    • v.5 no.1
    • /
    • pp.87-93
    • /
    • 1997
  • DA-5018, a new capsaicin derivative, showed potent analgesic effect comparable to that of morphine in various experimental acute pain models. in this study, whether the analgesic mechanism of DA-5018 is related to opiate receptors or prostanoids was investigated. The affinity of DA-5018 for opiate receptor was determined by receptor binding assay. The Ki values of DA-5018 for nonspecific and specific $\mu$, $textsc{k}$, $\delta$-opiate receptor was 299$\pm$8.88, 735$\pm$215, 2930$\pm$ 163, 1550$\pm$813 nM, respectively and DA-5018 exhibited lower affinity than morphine. DA-5018 (10-"~3$\times$10-′M) inhibited electrically-evoked contractions of the guinea ply ileum and rat vas deferens, and these inhibition was not antagonized by naloxone(10 nM), an opiate receptor antagonist. Antagonism of analgesic effect of 7A-5018 by naloxone was examined by tail pinch test. Analgesic action of DA-5018(0.1 ~2 mg/kg, 5.c.) was not antagonized by naloxone(1 mg/rg, i.p.). These results indicate that pharmacological action of DA-5018 is not related with opiate receptor. Cyclooxygenase and 5-lipoxygenase activities in rat peritoneal neutrophil treated with A23187 and arachidonic acid were measured by radioimmunoassay. DA-5018 stimulated the cyclooxygenase activity and the concentration show-ing the two fold increase of activity was 124$\mu$M. DA-5018 slightly inhibited 5-lipoxygenase activity and these results together indicate that analgesic action of 3A-5018 is not mediated through inhibition of cyclooxy genase or lipoxygenase. These results suggest that the analgesic effect of DA-5018 is not due to blocking opiate receptor or to inhibiting the synthesis of prostanoids in the arachidonic acid metabolism pathway.

  • PDF

Effects of the Constituents of Paeonia lactiflora Root on Arachidonate and NO Metabolism

  • Choi, Yong-Hwan;Gu, Lianyu;Kim, Yeong-Shik;Kang, Sam-Sik;Kim, Ju-Sun;Yean, Min-Hye;Kim, Hyun-Pyo
    • Biomolecules & Therapeutics
    • /
    • v.14 no.4
    • /
    • pp.216-219
    • /
    • 2006
  • In order to establish the anti-inflammatory cellular mechanism of the paeony root(Paeonia lactiflora, Pall, Paeoniaceae), the constituents including paeoniflorin, albiflorin, (+)-catechin, paeonol, benzoic acid and methyl gallate were evaluated for their effects on arachidonate and NO metabolism. Among the compounds tested, only paeonol weakly inhibited cyclooxygenase-2-mediated $PGE_2$ production from LPS-treated RAW 264.7 cells. (+)-Catechin and methyl gallate weakly inhibited inducible nitric oxide synthase-mediated NO production from the same cell line. In particular, methyl gallate significantly inhibited 5-lipoxygenase from RBL-l cells with an $IC_{50}$ of 8.4 ${\mu}M$. These results suggest that the inhibition of these components on arachidonate and NO metabolism may contribute at least in part to anti-inflammatory mechanism of the paeony root.

Anti-Inflammatory Activity of Compounds from the Whole Plant of Patrinia saniculaefolia

  • An, Ren-Bo;Na, Min-Kyun;Min, Byung-Sun;Chang, Hyeun-Wook;Bae, Ki-Hwan
    • Natural Product Sciences
    • /
    • v.17 no.2
    • /
    • pp.90-94
    • /
    • 2011
  • An in vitro bioassay-guide revealed that the methanol (MeOH) extract of the whole plant of Patrinia saniculaefolia (Valerianaceae) showed cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) dual inhibitory activity by assessing their effects on the production of prostaglandin $D_2$ ($PGD_2$) and leukotriene $C_4$ ($LTC_4$) in mouse bone marrow-derived mast cells (BMMCs). Phytochemical study of the MeOH extract of this plant led to the isolation of twelve compounds; ${\beta}$-farnesene (1), squalene (2), nardostachin (3), patridoid I (4), patridoid II (5), patridoid II-A (6), oleanolic acid (7), oleanonic acid (8), 23-hydroxyursolic acid (9), oleanolic acid 3-O-${\alpha}$-L-arabinopyranoside (10), oleanolic acid 3-O-${\beta}$-D-glucopyranoside (11), oleanolic acid 3-O-[${\beta}$-D-xylopyranosyl-(1${\rightarrow}$3)-${\beta}$-D-(6-O-butyl)glucuronopyranoside] (12). Among the compounds, 4 and 5 strongly inhibited both the COX-2-dependent $PGD_2$ generation with $IC_{50}$ values of 8.7 and 13.6 ${\mu}M$, respectively, and the generation of $LTC_4$ in the 5-LOX dependent phase with $IC_{50}$ values of 41.7 and 46.9 ${\mu}M$, respectively, which suggest that the anti-inflammatory activity of P. saniculaefolia might occur in part via the inhibition of both $PGD_2$ and $LTC_4$ generation by 4 and 5.

Chemical Constituents of the Root of Dystaenia takeshimana and Their Anti-Inflammatory Activity

  • Kim, Ju-Sun;Kim, Jin-Cheul;Shim, Sang-Hee;Lee, Eun-Ju;Jin, Wen-Yi;Bae, Ki-Hwan;Son, Kun-Ho;Kim, Hyun-Pyo;Kang, Sam-Sik;Chang, Hyeun-Wook
    • Archives of Pharmacal Research
    • /
    • v.29 no.8
    • /
    • pp.617-623
    • /
    • 2006
  • In our ongoing search for bioactive compounds originating from the endemic species in Korea, we found that the hexane and EtOAc fractions of the MeOH extract from the root of Dystaenia takeshimana (Nakai) Kitagawa (Umbelliferae) showed cyclooxygenase-2 (COX-2) and 5- lipoxygenase (5-LOX) dual inhibitory activity by assessing their effects on the production of prostaglandin $D_2\;(PGD_2)$ and leukotriene $C_4\;(LTC_4)$ in mouse bone marrow-derived mast cells. By activity-guided fractionation, five coumarins, viz. psoralen (2), xanthotoxin (3), scopoletin (4), umbelliferone (5), and (+)-marmesin (6), together with ${\beta}-sitosterol$ (1), were isolated from the hexane fraction, and two phenethyl alcohol derivatives, viz. 2-methoxy-2-(4'-hydroxyphenyl)ethanol (7) and 2-hydroxy-2-(4'-hydroxyphenyl)ethanol (8), three flavonoids, viz. apigenin (9), luteolin (10), and cynaroside (11), as well as daucosterol (12) were isolated from the EtOAc fraction using silica gel column chromatography. In addition, D-mannitol (13) was isolated from the BuOH fraction by recrystallization. Two of the coumarins, scopoletin (4) and (+)- marmesin (6), the two phenethyl alcohol derivatives (7, 8) and the three flavonoids (9-11) were isolated for the first time from this plant. Among the compounds isolated from this plant, the five coumarins as well as the three flavonoids showed COX-2/5-LOX dual inhibitory activity. These results suggest that the anti-inflammatory activity of D. takeshimana might in part occur via the inhibition of the generation of eicosanoids.

Inhibitory Effects of Phyto Extract Mixture (PEM381) on Type I Allergic Reaction (식물추출 복합물(PEM381)의 제I형 알레르기 반응 억제 효과)

  • Kim, Kyung-Bum;Lee, Eu-Gene;Chai, Ok-Hee;Song, Chang-Ho;Jeong, Jong-Moon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.2
    • /
    • pp.155-162
    • /
    • 2007
  • The purpose of this study is to investigate the anti type I allergic effects and mechanisms of the phyto extract mixture (PEM381) which contains Camellia sinensis (leaf), Psidium guajava (leaf), and Rosa hybrida (flower). PEM381 was tested for its inhibitory effects on arachidonic acid cascade related enzymes (5-lipoxygenase and cyclooxygenase), the mast cell mediated allergic reaction and passive cutaneous anaphylaxis. $IC_{50}$ value of PEM381 against 5-lipoxygenase was $14.11{\pm}0.51ppm$ while that of positive control (nordihy-droguaiaretic acid) was $0.54{\pm}0.08ppm$. PEM381 also exhibited considerable selective inhibition of cyclooxygenase-2. PEM381 could inhibit both degranulation and histamine release in a dose dependent manner from rat peritoneal mast cells activated by compound 48/80. In addition, oral administration of PEM381 showed an inhibitory effect on passive cutaneous anaphylaxis reaction activated by anti-dinitrophenyl IgE antibody in mice. These results suggest that PEM381 may be useful for the prevention and treatment of type Ⅰ allergy related diseases.

Anti-inflammatory Activity of the Flavonoid Components of Lonicera japonica (금은화 플라보노이드성분의 항염증작용)

  • 문태철;박정옥;정광원;손건호;김현표;강삼식;장현욱;정규찬
    • YAKHAK HOEJI
    • /
    • v.43 no.1
    • /
    • pp.117-123
    • /
    • 1999
  • Because of the potent effects of lipid mediators such as prostaglandins (PGs), leukotriens (LTs) and platelet activating factor (PAF) on a variety of cells and tissues, they are considered as major contributors to the process leading to inflammation and allergy. To pursue the mechanism of anti-inflammatory activity of Lonicera japonica, we tested inhibitory effects of 7 flavonoids from Lonicera japonica on arachidonic acid cascade related enzymes, such as inflammatory phospholipase $A_2$, cyclooxygenase-1 and 2, 5-lipoxygenase, in bone marrow derived mast cell (BMMC), and lyso PAF-acetyltransferase in rat spleen microsomes. Anti-inflammatory activities of lonicera japonica are thought to be attributed at least in part to the inhibition of arachidonic acid cascade releated enzymes by flavonoids such as apigenin, luteolin quercetin.

  • PDF

Screening of Arachidonic acid Cascade Related Enzymes Inhibitors from Korean Indigenous Plants(1) (한국 자생식물로부터 아라키돈산 대사계 효소 저해제 검색(1))

  • Moon, Tae-Chul;Jung, Hye-Jin;Lee, Eun-Kyung;Park, Hae-Young;Jeon, Su-Jin;Son, Kun-Ho;Kim, Hyun-Pyo;Bae, Ki-Hwan;Kang, Sam-Sik;Kwon, Dong-Yeul;Chang, Hyeun-Wook
    • Korean Journal of Pharmacognosy
    • /
    • v.34 no.1 s.132
    • /
    • pp.109-117
    • /
    • 2003
  • Arachidonic acid(AA), which is stored in membrane glycerophospholipids, is liberated by phospholipase $A_2(PLA_2)$ enzymes and is sequentially converted to cyclooxygenase (COX) and lipoxygenase (LOX) then to various bioactive prostaglandins (PGs,) and leukotrienes (LTs). In order to find the specific inhibitors of AA metabolism enzymes such as $PLA_2$, COX-2, 5-LO and lyso PAF acetyltransferase. 195 Korean indigenous plant extracts were evaluated for their inhibitory activity on $PGD_2,\;LTC_4$ production from cytokine-induced mouse bone marrow-derived mast cells (BMMC) and arachidonic acid released from phospholipid and PAF production from lyso PAF. From this screening procedure, methanol extract of eight plants such as Saururus chinensis, Aster tataricus, Chrysanthemum cinerariaefolium, Reynoutria japonica, Disocorea nipponica, Epimedium koreanum, impatiens textori, Veronica rotunda var. subintegra were found to inhibit production of inflammatory mediators in vitro assay system.

lntracellular $Ca^{2+}$ Mediates Lipoxygenase-induced Proliferation of U-373 MG Human Astrocytoma Cells

  • Kim, Jung-Ae;Chung, Young-Ja;Lee, Yong-Soo
    • Archives of Pharmacal Research
    • /
    • v.21 no.6
    • /
    • pp.664-670
    • /
    • 1998
  • The role of intracellular $Ca^{2+}$, in the regulation of tumor cell proliferation by products of arachidonic acid (AA) metabolism was investigated using U-373 MG human as trocytoma cells. Treatment with nordihydroguaiaretic acid (NDGA), a lipoxygenase (LOX) inhibitor, or caffeic acid (CA), a specific 5-LOX inhibitor, suppressed proliferation of the tumor cells in a dose-dependent manner. However, indomethacin (indo), a cyclooxygenase (COX) inhibitor, did not significantly alter proliferation of the tumor cells. At anti-proliferative concentrations, NDGA and CA significantly inhibited intracellular $Ca^{2+}$ release induced by carbachol, a known intracelluar $Ca^{2+}$ agonist in the tumor cells. Exogenous administration of leukotriene $B_4(LTB_4)$, an AA metabolite of LOX pathway, enhanced proliferation of the tumor cells in a concentration-dependent fashion. In addition, $LTB_4$, induced intracelluar $Ca^{2+}$ release. Intracellular $Ca^{2+}$-inhibitors, such as an intracellular $Ca^{2+}$ chelator (BAPTA) and intracellular $Ca^{2+}$-release inhibitors (dantrolene and TMB-8), significantly blocked the LTB4-induced enhancement of cell proliferation and intracellular $Ca^{2+}$ release. These results suggest that LOX activity may be critical for cell proliferation of the human astrocytoma cells and that intracelluar $Ca^{2+}$ may play a major role in the mechanism of action of LOX.

  • PDF