• Title/Summary/Keyword: Cyclic oxidation-reduction

Search Result 118, Processing Time 0.026 seconds

Photophysical Properties of a Conjugated Poly(1-dodecyl-2,5-pyrrylene vinylene)

  • Park, Chang-Shik;Kim, In-Tae;Lee, Sang-Woo;Lee, Ha-Hyeong;Lee, Young-Nam;Jeon, Ki-Seok;Lee, Ki-Hwan;Sung, Nack-Do;Kil, Mun-Jae
    • Macromolecular Research
    • /
    • v.12 no.3
    • /
    • pp.322-324
    • /
    • 2004
  • Poly(1-dodecyl-2,5-pyrrylene vinylene) (PDPV) has an extended 1t-conjugated structure and exhibits characteristic spectroscopic features. The PDPV we prepared has an absorption maximum at 510nm and its long absorption tail at ca. 750nm in methylene chloride is due to the long 1t-conjugated system connected to vinyl group. The large red-shift of emission was 625nm upon excitation at 480nm, which suggests the existence of a low emissive state. The emission of PDPV in less-polar solvents decreased markedly relative to that in the more-polar solvents; this observation was ascribed possibly to quenching by a strong vibrational mode of the dodecyl groups of PDPV in less-polar solvents. Furthermore, the emission from the high-energy side had a single decay component (0.1㎱, 49.96%), while that from the low-energy side had two components (0.6㎱, 27.1 %; 2.7㎱, 22.87%). We characterized the redox properties of PDPV by cyclic voltammetry. Every redox peak showed irreversible behavior; the oxidation peaks appeared at 1.7,0.8, and 0.6V and the reduction peak at -0.5V.

A Study on the Electrochemical Synthesis of L-DOPA Using Oxidoreductase Enzymes: Optimization of an Electrochemical Process

  • Rahman, Siti Fauziyah;Gobikrishnan, Sriramulu;Indrawan, Natarianto;Park, Seok-Hwan;Park, Jae-Hee;Min, Kyoungseon;Yoo, Young Je;Park, Don-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.10
    • /
    • pp.1446-1451
    • /
    • 2012
  • Levodopa or L-3,4-dihydroxyphenylalanine (L-DOPA) is the precursor of the neurotransmitter dopamine. L-DOPA is a famous treatment for Parkinson's disease symptoms. In this study, electroenzymatic synthesis of L-DOPA was performed in a three-electrode cell, comprising a Ag/AgCl reference electrode, a platinum wire auxiliary electrode, and a glassy carbon working electrode. L-DOPA had an oxidation peak at 376 mV and a reduction peak at -550 mV. The optimum conditions of pH, temperature, and amount of free tyrosinase enzyme were pH 7, $30^{\circ}C$, and 250 IU, respectively. The kinetic constant of the free tyrosinase enzyme was found for both cresolase and catacholase activity to be 0.25 and 0.4 mM, respectively. A cyclic voltammogram was used to investigate the electron transfer rate constant. The mean heterogeneous electron transfer rate ($k_e$) was $5.8{\times}10^{-4}$ cm/s. The results suggest that the electroenzymatic method could be an alternative way to produce L-DOPA without the use of a reducing agent such as ascorbic acid.

Dioxygen Binding to Dirhodium(Ⅱ, Ⅱ), (Ⅱ, Ⅲ), and (Ⅲ, Ⅲ) Complexes. Spectroscopic Characterization of $[Rh_{2}(ap)_{4}(O_{2})]^{+},\;Rh_{2}(ap)_{4}(O_{2}),\;and\;[Rh_{2}(ap)_{4}(O_{2})]^-$, where ap=2-anilinopyridinate Ion

  • Lee, Jae-Duck;Yao, Chao-Liang;Capdevielle, Francoise J.;Han, Bao-Cheng;Bear, John L.;Kadish, Karl M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.2
    • /
    • pp.195-200
    • /
    • 1993
  • The neutral, reduced, and oxidized 2,2-trans isomers of $Rh_2(ap)_4$ (ap=2-anilinopyridinate) were investigated with respect to dioxygen binding in $CH_2Cl_2$ containing 0.1 M tetrabutyl-ammonium perchlorate. $Rh_2(ap)_4$ binds dioxygen in nonaqueous media and forms a $Rh^{II}Rh^{III}$ superoxide complex, $Rh_2(ap)_4(O_2)$. This neutral species was isolated and is characterized by UV-visible and IR spectroscopy, mass spectrometry and cyclic voltammetry. It can be reduced by one electron at $E_{1/2}$ = -0.45 V vs. SCE in $CH_2Cl_2$ and gives ${[Rh_2(ap)_4(O_2)]}^-$ as demonstrated by the ESR spectrum of a frozen solution taken after controlled potential reduction. The superoxide ion in ${[Rh_2(ap)_4(O_2)]}^-$ is axially bound to one of the two rhodium ions, both of which are in a +2 oxidation state. $Rh_2(ap)_4(O_2)$ can also be stepwise oxidized in two one-electron transfer steps at $E_{1/2}$ = 0.21 V and 0.85 V vs. SCE in $CH_2Cl_2$ and gives ${[Rh_2(ap)_4(O_2)]}^+$ followed by ${[Rh_2(ap)_4(O_2)]}^{2+}$. ESR spectra demonstrate that the singly oxidized complex is best described as ${[Rh^{II}Rh^{III}(ap)_4(O_2)]}^+$ where the odd electron is delocalized on both of the two rhodium ions and the axial ligand is molecular oxygen.

Anode processes on Pt and ceramic anodes in chloride and oxide-chloride melts

  • Mullabaev, A.R.;Kovrov, V.A.;Kholkina, A.S.;Zaikov, Yu.P.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.965-974
    • /
    • 2022
  • Platinum anodes are widely used for metal oxides reduction in LiCl-Li2O, however high-cost and low-corrosion resistance hinder their implementation. NiO-Li2O ceramics is an alternative corrosion resistant anode material. Anode processes on platinum and NiO-Li2O ceramics were studied in (80 mol.%) LiCl-(20mol.%)KCl and (80 mol.%)LiCl-(20 mol.%)KCl-Li2O melts by cyclic voltammetry, potentiostatic and galvanostatic electrolysis. Experiments performed in the LiCl-KCl melt without Li2O illustrate that a Pt anode dissolution causes the Pt2+ ions formation at 3.14 V and 550℃ and at 3.04 V and 650℃. A two-stage Pt oxidation was observed in the melts with the Li2O at 2.40 ÷ 2.43 V, which resulted in the Li2PtO3 formation. Oxygen current efficiency of the Pt anode at 2.8 V and 650℃ reached about 96%. The anode process on the NiO-Li2O electrode in the LiCl-KCl melt without Li2O proceeds at the potentials more positive than 3.1 V and results in the electrochemical decomposition of ceramic electrode to NiO and O2. Oxygen current efficiency on NiO-Li2O is close to 100%. The NiO-Li2O ceramic anode demonstrated good electrochemical characteristics during the galvanostatic electrolysis at 0.25 A/cm2 for 35 h and may be successfully used for pyrochemical treating of spent nuclear fuel.

A Study on Glucose Sensing Measured by Catalyst Containing Multiple Layers of Glucose Oxidase and Gold Nano Rod (글루코스산화효소와 금나노로드 입자의 다층막으로 구성된 촉매를 이용하여 측정한 글루코스 센싱에 대한 연구)

  • Chung, Yong-Jin;Hyun, Kyuhwan;Han, Sang Won;Min, Ji Hong;Chun, Seung-Kyu;Koh, Won-Gun;Kwon, Yongchai
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.2
    • /
    • pp.179-183
    • /
    • 2015
  • In this study, we propose a catalyst structure including enzyme and metal nano rod for glucose sensing. In the catalyst structure, glucose oxidase (GOx) and gold nano rod (GNR) are alternatingly immobilized on the surface of carbon nanotube (CNT), while poly(ethyleneimine) (PEI) is inserted in between the GOx and GNR to fortify their bonding and give them opposite polarization ($[GOx/GNR]_nPEI/CNT$). To investigate the impact of $[GOx/GNR]_nPEI/CNT$ on glucose sensing, some electrochemical measurements are carried out. Initially, their optimal layer is determined by using cyclic voltammogram and as a result of that, it is proved that $[GOx/GNR/PEI]_2/CNT$ is the best layer. Its glucose sensitivity is $13.315{\mu}AmM^{-1}cm^{-2}$. When it comes to the redox reaction mechanism of flavin adenine dinucleotide (FAD) within $[GOx/GNR/PEI]_2/CNT$, (i) oxygen plays a mediator role in moving electrons and protons generated by glucose oxidation reaction to those for the reduction reaction of FAD and (ii) glucose does not affect the redox reaction of FAD. It is also recognized that the $[GOx/GNR/PEI]_3/CNT$ is limited to the surface reaction and the reaction is quasi-reversible.

Studies on the Electrochemical Properties of $TiO_{2-x}$ Thin Films ($TiO_{2-x}$ 박막의 전기화학적 성질에 관한 연구)

  • Q Won Choi;Chu Hyun Choe;Ki Hyung Chjo;Yong Kook Choi
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.19-26
    • /
    • 1986
  • A titanium oxide thin films were prepared by air oxidation and vapour oxidation and a $TiO_2$ single crystal was reduced by heating in an argon atmosphere. All the electrode characteristics of the Ti$O_{2-x}$, thin films are not different from those of slightly reduced single crystal rutile. In cyclic voltammogram of oxygen containing electrolyte solution at Ti$O_{2-x}$ electrodes, cathodic peaks were observed at between -0.8V and -1.0V vs. SCE. The cathodic current near 0V vs. SCE in saturated solution with nitrogen was observed to be greater than in saturated solution with air. The chronoamperogram was represented by the equation of i = $i_0e^{-kt}$, when the rate constant k was represented by the equation of k =$k_0{[H^+]}^nexp(A{\eta}+E_a/RT)$ The values of activation energy $E_a $were found to be 4.6~4.8kcal/mole in overpotential range of 0.035∼0.145 V and 1.6kcal/mole in overpotential range of 0.2∼0.5V. The values of n and A were found to be 0. 1 and 5.4~5.6/V in range of 0.035~0.145V, and in range of 0.2~0.5V, to be 0.04 and 1.3/V, respectively. This can be interpreted as an totally irreversible reduction of oxygen.

  • PDF

Synthesis and Properties of Ionic Polyacetylene Composite from the In-situ Quaternization Polymerization of 2-Ethynylpyridine Using Iron (III) Chloride (염화 철(III)을 이용한 2-에티닐피리딘의 in-situ4차염화중합을 통한 이온형 폴리아세틸렌 복합체의 합성과 특성)

  • Taehyoung Kim;Sung-Ho Jin;Jongwook Park;Yeong-Soon Gal
    • Applied Chemistry for Engineering
    • /
    • v.35 no.4
    • /
    • pp.296-302
    • /
    • 2024
  • An ionic conjugated polymer-iron (III) chloride composite was prepared via in-situ quaternization polymerization of 2-ethynylpyridine (2EP) using iron (III) chloride. Various instrumental methods revealed that the chemical structure of the resulting conjugated polymer (P2EP)-iron (III) chloride composite has the conjugated backbone system having the designed pyridinium ferric chloride complexes. The polymerization mechanism was assumed to be that the activated triple bond of 2-ethynylpyridinium salt, formed at the first reaction step, is easily susceptible to the step-wise polymerization, followed by the same propagation step that contains the propagating macroanion and monomeric 2-ethynylpyridinium salts. The electro-optical and electrochemical properties of the P2EP-FeCl3 composite were studied. In the UV-visible spectra of P2EP-FeCl3 composite, the absorption maximum values were 480 nm and 533 nm, and the PL maximum value was 598 nm. The cyclic voltammograms of the P2EP-FeCl3 composite exhibited irreversible electrochemical behavior between the oxidation and reduction peaks. The kinetics of the redox process of composites were found to be very close to a diffusion-controlled process from the plot of the oxidation current density versus the scan rate.

Preparation of Nickel Hexacyanoferrate Ion Exchanger for Electrochemical Separation of Cations (양이온의 전기화학적 분리를 위한 페리시안니켈 이온교환체의 제조에 관한 연구)

  • Lee, Ji Hyun;Hwang, Young Gi
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.52-57
    • /
    • 2010
  • Although chemical sedimentation and ion exchange are usually applied to the treatment of heavy metal ions and radioactive cations, they have some serious disadvantages like a great consumption of chemicals, the disposal of valuable metals, and the secondary pollution of soil by the solid-waste. The advanced countries recently have studied the electrochemical ion exchange, combined electrochemical reduction and ion exchange, for the development of the alternative technique. This study has been performed to investigate the optimum condition for the preparation of the nickel hexacyanoferrate (NiHCNFe) which is an electrochemical ion exchanger. NiHCNFe film was deposited on the surface of nickel plate by chemical method or electrochemical method. The morphology and composition of NiHCNFe were observed by SEM and EDS, respectively. The peak current density of NiHCNFe was measured from the cyclic voltammograms of the continuous oxidation-reduction reaction in a parallel plane ion exchange electrode reactor. It was found that the chemical preparation method was better than the electrochemical method. The concentrated NiHCNFe was apparently deposited on nickel plate when dipping in the preparing solution for 118 h, especially. It also had a best durable performance as an ion exchange electrode.

Thermal Behavior of $NiFe_2O_4$ for Hydrogen Generation (열화학 사이클 $H_2$ 제조를 위한 $NiFe_2O_4$의 열적 거동)

  • 한상범;강태범;주오심;정광덕
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.11a
    • /
    • pp.51-55
    • /
    • 2003
  • The thermal behavior of NiFe$_2$O$_4$ prepared by a solid-state reaction was investigated for H$_2$ generation by the thermochemical cycle. The reduction of NiFe$_2$O$_4$ started from 800 $^{\circ}C$, and the weight loss was 0.2-0.3 wt% up to 1000 $^{\circ}C$. At this reaction, NiFe$_2$O$_4$ was reduced by release of oxygen bonded with the Fe$^3$ion in the B site of NiFe$_2$O$_4$. In the $H_2O$ decomposition reaction, H$_2$ was generated by oxidation of reduced NiFe$_2$O$_4$. The crystal structure of NiFe$_2$O$_4$ for redox reaction maintained spinel structure. Then, NiFe$_2$O$_4$ is excellent material in the thermochemical cyclic reaction due to release oxygen at low temperature for the reduction reaction and produce H$_2$ maintaining crystal structure for redox reaction.

  • PDF

Synthesis of Cobalt(II), Nickel(II) and Copper(II) Complexes with Tetradentate Schiff Base Ligand of o-BSDT $H_2$ and Electrochemical properties in DMSO (네자리 Schiff Base 리간드의 Cobalt(II), Nickel(II) 및 Copper(II) 착물의 합성과 DMSO용액에서 전기화학적 성질)

  • Ki-Hyung Chjo;Jong-Soon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.509-519
    • /
    • 1987
  • The tetradentate Schiff base ligand, 3,4-bis(salicylidene diimine) toluene, have been prepared by the reaction of salicylaldehyde with 3,4-diaminotoluene by Duff method. The Schiff base ligand reacts with Ni(II), Co(II), and Cu(II) ions to form new complexes, [Ni(o-BSDT)${\cdot}(H_2O)_2$], [Co(o-BSDT)${\cdot}(H_2O)$], and [Cu(o-BSDT)]. It seems that Ni(II) and Ni(II) complexes are hexacoordinated with the Schiff base ligand and two molecules of water, while the Cu(II) complexes are tetracoordinated with the Schiff base. The mole ratio of tetradentate Schiff base ligand to metals was found to be 1 : 1. The redox chemistry of these complexes was investigated by polarography and cyclic voltammetry with glassy carbon electrode in DMSO with 0.1M TEAP${\cdot}$[Ni(o-BSDT)${\cdot}(H_2O)_2$] hav EC reaction mechanisms which undergo a irreversible electron transfer followed by a fast chemical reaction. [Co(o-BSDT)${\cdot}(H_2O)_2$] undergoes a reduction of Co(II) to Co(I) and a oxidation of Co(II) to Co(III), and [Cu(o-BSDT)] undergoes a reduction of Cu(II) to Cu(I).

  • PDF