• Title/Summary/Keyword: Cyclic loading tests

Search Result 528, Processing Time 0.028 seconds

Static and Fatigue Fracture Assessment of Hybrid Composite Joint for the Tilting Car Body (틸팅차량용 차체의 Hybrid 복합재 접합체결부의 정적 및 피로 파괴 평가)

  • Jung, Dal-Woo;Kim, Jung-Seok;Seo, Sueng-Il;Jo, Se-Hyun;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.166-173
    • /
    • 2007
  • Fatigue fracture behavior of a hybrid bolted joint was evaluated in comparison to the case of static fracture. Two kinds of specimens were fabricated for the mechanical tests; a hybrid bolted joint specimen for the shear test and a hybrid joint part specimen applied in the real tilting car body for the bending test. Characteristic fracture behaviors of those specimens under cyclic toads were obviously different from the case under static loads. For the hybrid bolted joint specimen, static shear loading caused the fracture of the bolt body itself in a pure shear mode, whereas cyclic shear loading brought about the fracture at the site of local tensile stress concentration. For the hybrid joint part specimen, static bend loading caused the shear deformation and fracture in the honeycomb core region, while cyclic bend loading did the delamination along the interface between composite skin and honeycomb core layers as well as the fracture of welded joint part. Experimental results obtained by static and fatigue tests were reflected in modifications of design parameters of the hybrid joint structure in the real tilting car body.

Pseudo-dynamic and cyclic loading tests on a steel-concrete vertical hybrid structure

  • Wang, Bo;Wu, Tao;Dai, Huijuan;Bai, Guoliang;Wu, Jian
    • Earthquakes and Structures
    • /
    • v.17 no.4
    • /
    • pp.399-409
    • /
    • 2019
  • This paper presents the experimental investigations on the seismic performance of a peculiar steel-concrete vertical hybrid structural system referred to as steel truss-RC tubular column hybrid structure. It is typically applied as the supporting structural system to house air-cooled condensers in thermal power plants (TPPs). Firstly, pseudo-dynamic tests (PDTs) are performed on a scaled substructure to investigate the seismic performance of this hybrid structure under different hazard levels. The deformation performance, deterioration behavior and energy dissipation characteristics are analyzed. Then, a cyclic loading test is conducted after the final loading case of PDTs to verify the ultimate seismic resistant capacity of this hybrid structure. Finally, the failure mechanism is discussed through mechanical analysis based on the test results. The research results indicate that the steel truss-RC tubular column hybrid structure is an anti-seismic structural system with single-fortification line. RC tubular columns are the main energy dissipated components. The truss-to-column connections are the structural weak parts. In general, it has good ductile performance to satisfy the seismic design requirements in high-intensity earthquake regions.

State-of-the-Art on the Experiment Studies for Evaluating Piping Integrity under Seismic Loading Conditions (지진 하중조건에서 배관 건전성 평가를 위한 실험적 연구 현황)

  • Kim, Jin Weon;Kim, Jong Sung;Kim, Yun Jae;Kweon, Hyeong Do
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.1
    • /
    • pp.16-39
    • /
    • 2017
  • This paper reviewed and summarized the experimental studies conducted during last three decades to evaluate the structural integrity and to establish the acceptance criteria for piping system of nuclear power plants (NPPs) under seismic loading condition. These experimental studies contain the results of large-scale piping system tests under excessive seismic loading as well as standard specimen tests, simplified piping specimen tests, and piping components tests under simplified dynamic and cyclic loading. These would be useful as a basis for establishing integrity assessment procedure and acceptance criteria for piping systems of NPPs under beyond design basis earthquake (BDBE) conditions, and also could be used in planing the scope and direction of further related researches.

Experimental investigation on hysteretic behavior of rotational friction dampers with new friction materials

  • Anoushehei, Majid;Daneshjoo, Farhad;Mahboubi, Shima;Khazaeli, Sajjad
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.239-248
    • /
    • 2017
  • Friction dampers are displacement dependent energy dissipation devices which dissipate earthquake energy through friction mechanism and widely used in improving the seismic behavior of new structures and rehabilitation of existing structures. In this paper, the cyclic behavior of a friction damper with different friction materials is investigated through experimental tests under cyclic loading. The damper is made of steel plates, friction pads, preloaded bolts and hard washers. The paper aims at investigating the hysteretic behavior of three friction materials under cyclic loading to be utilized in friction damper. The tested friction materials are: powder lining, super lining and metal lining. The experimental results are studied according to FEMA-356 acceptance criteria and the most appropriate friction material is selected by comparing all friction materials results.

Bridging Effect and Fatigue Crack Growth of Silicon Nitride (질화규소의 피로균열진전과 입자가교효과)

  • 유성근
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.11
    • /
    • pp.1203-1208
    • /
    • 1996
  • Crack growth tests on silicon nitride have been made to clarify the crack growth characteristics under static and cyclic loading. Under constant K(K: stress intensity factor) static loading the crack growth rate in silicon nitride decreases with increasing crack extension and is finally arrested. The cack growth resistiance is largely reduced by the application of stress cycling and though the crack growth resistiacne increases with increasing of crack extension the increasing rate is much smaller under cyclic loading than under static loading.

  • PDF

Tests of Slab-Column Connections with Partially Debonded Reinforcement under Cyclic Lateral Loading (부분적인 비 부착 철근을 갖는 슬래브-기둥 접합부의 반복 횡하중 실험)

  • Choi, Jung-Wook;Song, Jin-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.13-16
    • /
    • 2006
  • This article summarizes tests conducted on two full-scale interior slab-column connections with and without partially debonded reinforcement subjected to cyclic loading. Each test specimen consisted of a 4.2m square slab with a 355mm square column protruding 1.5m above and below the slab. The slab thickness was 152mm. The specimen with partially debonded reinforcement exhibited more lateral drift capacity than did the specimen with fully bonded reinforcement. With partial debonding of the flexural reinforcement, cyclic load appeared to produce less damage to the connection in the vicinity of the slab-column joint region.

  • PDF

Characteristics of Liquefaction Behavior with Earthquake Load Frequency (지진하중 주파수에 따른 액상화 거동 특성)

  • Yoon, Won-Sub
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.739-748
    • /
    • 2019
  • In this study, cyclic triaxial tests were performed for liquefaction characteristics according to earthquake loading frequency. The test period was tested for 0.1Hz, 0.2Hz, 0.5Hz 1.0Hz, 1.5Hz. It was analyzed that the number of earthquake loading increases as the test result frequendy increases. Therefore, additional study of the liquefaction evaluation method was needed considering the local characteristics of the high frequency earthquakes in Korea and the cyclic triaxial test frequency(0.1Hz), which is mainly used in the design.

A Experimental Study for the Mechanical Behavior of Rock Joints under Cyclic Shear Loading (주기전단 하중하의 암석 절리의 역학적 거동에 관한 실험적 연구)

  • 이희석;박연준;유광호;이희근
    • Tunnel and Underground Space
    • /
    • v.9 no.4
    • /
    • pp.350-363
    • /
    • 1999
  • The precision cyclic shear test system was established to investigate the mechanical characteristics of rough rock joints under cyclic loading conditions. Laboratory cyclic shear tests were conducted for saw-cut joints and artificial rough rock joints using Hwangdeung granite and Yeosan marble. Surface roughness and aperture characteristics of specimens were examined by measuring surface topography using the laser profilometer. Peak shear strength, phase difference during loading and unloading, and anisotropic shear behavior were investigated throughout the cyclic shear test results. These features and their subsequent variations in each loading cycle are significantly dependent upon the second order asperities and the strength of intact rock. It was observed that degradation of asperities for rough rock joints under cyclic shear loading followed the exponential degradation laws of asperity angle and that the mechanism for asperity degradation would be different depending upon the normal stress level, roughness of joint surface and the loading stage.

  • PDF

Cyclic behavior of RT-cement treated marine clay subjected to low and high loading frequencies

  • Al-Bared, Mohammed A.M.;Harahap, Indra S.H.;Marto, Aminaton;Mohamad, Hisham;Abad, Seyed Vahid Alavi Nezhad Khalil;Mustaffa, Zahiraniza
    • Geomechanics and Engineering
    • /
    • v.21 no.5
    • /
    • pp.433-445
    • /
    • 2020
  • The weakening and softening behavior of soft clay subjected to cyclic loading due to the build-up of excess pore water pressure is well-known. During the design stage of the foundation of highways and coastal high-rise buildings, it is important to study the mechanical behavior of marine soils under cyclic loading as they undergo greater settlement during cyclic loading than under static loading. Therefore, this research evaluates the cyclic stress-strain and shear strength of untreated and treated marine clay under the effects of wind, earthquake, and traffic loadings. A series of laboratory stress-controlled cyclic triaxial tests have been conducted on both untreated and treated marine clay using different effective confining pressures and a frequency of 0.5 and 1.0 Hz. In addition, treated samples were cured for 28 and 90 days and tested under a frequency of 2.0 Hz. The results revealed significant differences in the performance of treated marine clay samples than that of untreated samples under cyclic loading. The treated marine clay samples were able to stand up to 2000 loading cycles before failure, while untreated marine clay samples could not stand few loading cycles. The untreated marine clay displayed a higher permanent axial strain rate under cyclic loading than the treated clay due to the existence of new cementing compounds after the treatment with recycled tiles and low amount (2%) of cement. The effect of the effective confining pressure was found to be significant on untreated marine clay while its effect was not crucial for the treated samples cured for 90 days. Treated samples cured for 90 days performed better under cyclic loading than the ones cured for 28 days and this is due to the higher amount of cementitious compounds formed with time. The highest deformation was found at 0.5 Hz, which cannot be considered as a critical frequency since smaller frequencies were not used. Therefore, it is recommended to consider testing the treated marine clay using smaller frequencies than 0.5 Hz.

Analysis of Cyclic Loading Transferred Mechanism on Geosynthetic-Reinforced and Pile-Supported Embankment (토목섬유로 보강된 성토지지말뚝 시스템의 반복하중 전이 메커니즘 분석)

  • Lee, Sung-Jee;Yoo, Min-Taek;Lee, Su-Hyung;Baek, Min-Cheol;Lee, Il-Wha
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.12
    • /
    • pp.79-91
    • /
    • 2016
  • Geosynthetic-reinforced and Pile-supported (GRPS) embankment method is widely used to construct structures on soft ground due to restraining residual settlement and their rapid construction. However, effect of cyclic loading has not been established although some countries suggest design methods through many studies. In this paper, cyclic loading tests were conducted to analyze dynamic load transfer characteristics of pile-supported embankment reinforced with geosynthetics. A series of 3 case full scale model tests which were non-reinforced, one-layer-reinforced, two-layer reinforced with geosynthetics were performed on piled embankments. In these series of tests, the height of embankment and pile spacing were selected according to EBGEO (2010) standard in Germany. As a result of the vertical load parts on the pile and on the geosynthetic reinforcement measured separately, cyclic loads transferred by only arching effect decreased with strength geosynthetic-reinforced case. However, final loads on the pile showed no differences among the cases. These results conflict with previous studies that reinforcement with geosynthetics increases transfer load concentrated on piles. In addition, it is observed that the load transferred to pile decreases at the beginning of cycle number due to reduction of arching effected by cyclic loading. Based on these results, transferred mechanism for cyclic load on GRPS system has been presented.