• Title/Summary/Keyword: Cycle-C

Search Result 3,350, Processing Time 0.035 seconds

FSM Designs with Control Flow Intensive Cycle-C Descriptions (Cycle-C를 이용한 제어흐름 중심의 FSM 설계)

  • Yun Chang-Ryul;Jhang Kyoung-Son
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.1
    • /
    • pp.26-35
    • /
    • 2005
  • Generally, we employ FSMs for the design of controllers in digital systems. FSMs are Implemented with state diagrams generated from control flow. With HDL, we design and verify FSMs based on state diagrams. As the number of states in the system increases, the verification or modification processes become complicated, error prone and time consuming. In this paper, we propose a control flow oriented hardware description language at the register transfer level called Cycle-C. Cycle-C describes FSMs with timing information and control How intensive algorithms. The Cycle-C description is automatically converted into FSMs in the form of synthesizable RTL VHDL. In experiments, we design FSMs for control intensive interface circuits. There is little area difference between Cycle-C design and manual design. In addition, Cycle-C design needs only 10~50% of the number lines of manual RTL VHDL designs.

Life cycle assessment (LCA) of roof-waterproofing systems for reinforced concrete building

  • Ji, Sukwon;Kyung, Daeseung;Lee, Woojin
    • Advances in environmental research
    • /
    • v.3 no.4
    • /
    • pp.367-377
    • /
    • 2014
  • In this study, we investigated a life cycle assessment (LCA) of six roof-waterproofing systems [asphalt (C1), synthetic polymer-based sheet (C2), improved asphalt (C3), liquid applied membrane (C4), Metal sheet with asphalt sheet (N1), and liquid applied membrane with asphalt sheet (N2)]for reinforced concrete building using an architectural model. To acquire accurate and realistic LCA results, minimum units of material compositions for life cycle inventory and real data for compositions of waterproofing materials were used. Considering only materials and energy demands for waterproofing systems per square meter, higher greenhouse gas (GHG) emissions could be generated in the order of C1 > N2 > C4 > N1 > C2 > C3 during construction phase. However, the order was changed to C1 > C4 > C3 > N2 > N1 > C2, when the actual architecture model was applied to the roof based on each specifications. When an entire life cycle including construction, maintenance, and deconstruction were considered, the amount of GHG emission was in the order of C4 > C1 > C3 > N2 > C2 > N1. Consequently, N1 was the most environmental-friendly waterproofing system producing the lowest GHG emission. GHG emissions from maintenance phase accounted for 71.4%~78.3% among whole life cycle.

A Study on Low-Cycle Fatigue Behavior at Elevated Temperature of High Carbon Steel Used For Structural Purpose (構造용高炭素鋼材 의 高溫 低 사이클 피勞擧動 에 關한 硏究)

  • 옹장우;김재훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.2
    • /
    • pp.101-106
    • /
    • 1982
  • This study was undertaken to determine tensile properties and low-cycle fatigue behavior of 0.6%C high carbon steel used of structural purposes at temperatures up to 500.deg.C. In the low-cycle fatigue test the upper limit was decided by elongation(i.e. the total strain range), while the lower limit was defined by the load (i.e. zero load). The following results were obtained. Both, the ultimate tensile strength and low-cycle fatigue resistance attain the maximum values near 250.deg.C. Above this temperature the values decrease rapidly as the temperature increases. The low-cycle fatigue resistance decreases whenever there is an increase of the total strain range. Because the hardness of cycle fatigued specimen correlates cyclic hardening and cyclic softening, therefore the hardness of cycle fatigued specimen is smaller than that of the nonfatigued specimen at room temperature and 500.deg.C but much larger than the hardness of the nonfatigued specimen near 250.deg.C.

Cooling Performance Characteristics of High-Performance Heat Pump with VI Cycle Using Re-Cooler (재냉기를 이용한 고성능 VI(Vapor Injection)사이클 열펌프의 냉방 성능특성에 관한 연구)

  • Lee, Jin-Kook;Choi, Kwang-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.592-598
    • /
    • 2015
  • In this study, we experimentally investigate the performance characteristics of a high-performance summer-cooling heat pump for an R410A by applying an air-cooled-type vapor-injection (VI) cycle. The devices used for the experiment consist of a VI compressor, condenser, oil separator, plate-type heat-exchanger, economizer, evaporator, and re-cooler. The experimental conditions employed for the cooling performance were divided into three cycles. First, in Cycle A, we apply a VI cycle and with no heat exchange between the evaporator outlet refrigerant and the VI cycle suction refrigerant in the re-cooler. For Cycle B, there is heat exchange, and for Cycle C, there is neither a VI cycle nor heat exchange between the evaporator outlet refrigerant and the VI cycle suction refrigerant. From the analysis results, we observe that the performance was highest in the VI cycle with heat exchange between the evaporator outlet refrigerant and the VI cycle suction refrigerant (Cycle B), while it was lowest in Cycle C without application of the VI cycle. Moreover, the cooling coefficient of Performance ($COP_C$) averaged 3.5 in Cycle B, which was 8.6% higher than the corresponding value in Cycle A, and 33% higher than that in Cycle C.

Weakly Complementary Cycles in 3-Connected Multipartite Tournaments

  • Volkmann, Lutz;Winzen, Stefan
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.2
    • /
    • pp.287-302
    • /
    • 2008
  • The vertex set of a digraph D is denoted by V (D). A c-partite tournament is an orientation of a complete c-partite graph. A digraph D is called cycle complementary if there exist two vertex disjoint cycles $C_1$ and $C_2$ such that V(D) = $V(C_1)\;{\cup}\;V(C_2)$, and a multipartite tournament D is called weakly cycle complementary if there exist two vertex disjoint cycles $C_1$ and $C_2$ such that $V(C_1)\;{\cup}\;V(C_2)$ contains vertices of all partite sets of D. The problem of complementary cycles in 2-connected tournaments was completely solved by Reid [4] in 1985 and Z. Song [5] in 1993. They proved that every 2-connected tournament T on at least 8 vertices has complementary cycles of length t and ${\mid}V(T)\mid$ - t for all $3\;{\leq}\;t\;{\leq}\;{\mid}V(T)\mid/2$. Recently, Volkmann [8] proved that each regular multipartite tournament D of order ${\mid}V(D)\mid\;\geq\;8$ is cycle complementary. In this article, we analyze multipartite tournaments that are weakly cycle complementary. Especially, we will characterize all 3-connected c-partite tournaments with $c\;\geq\;3$ that are weakly cycle complementary.

Increase of treatment amount of thermophilic oxic process considering calorie/water (C/W) ratio (칼로리/수분 (C/W)비를 고려한 고온호기 처리법에서의 처리량 증가)

  • Jeon, Kyoung-Ho;Choi, Dong-Yoon;Song, Jun-Ik;Park, Kyu-Hyun;Kwag, Jung-Hoon;Kim, Jae-Hwan;Kang, Hee-Sul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.2
    • /
    • pp.203-210
    • /
    • 2010
  • The signification of calorie/water (C/W) ratio was investigated in the treatment of highly concentrated organic wastes by thermophilic oxic process (TOP). Swine waste was used in this study. When C/W ratio was 1.6, most of swine waste was decomposed and all water was evaporated in the 24-h injection cycle. To improve treatment efficiency of TOP treating swine waste, the effect of shortening the swine waste injection cycle was examined. The shortening of injection cycle was conducted to stimulate the activity of thermophilic bacteria. A high temperature in the reactor was maintained by shortening of the injection cycle. When the swine waste injection cycle was shortened, the C/W ratio was fixed at 1.6. As a result, by shortening the swine waste injection cycle from 24-h to 12 and 6-h, the maximum loading rate of swine waste per day could be improved 1.9 and 3.5 times, respectively.

THE CHROMATIC POLYNOMIAL FOR CYCLE GRAPHS

  • Lee, Jonghyeon;Shin, Heesung
    • Korean Journal of Mathematics
    • /
    • v.27 no.2
    • /
    • pp.525-534
    • /
    • 2019
  • Let $P(G,{\lambda})$ denote the number of proper vertex colorings of G with ${\lambda}$ colors. The chromatic polynomial $P(C_n,{\lambda})$ for the cycle graph $C_n$ is well-known as $$P(C_n,{\lambda})=({\lambda}-1)^n+(-1)^n({\lambda}-1)$$ for all positive integers $n{\geq}1$. Also its inductive proof is widely well-known by the deletion-contraction recurrence. In this paper, we give this inductive proof again and three other proofs of this formula of the chromatic polynomial for the cycle graph $C_n$.

Increase of Low Cycle Fatigue Life at 300℃ for Type 304 Stainless Steel (304 스테인리스강의 300℃에서 저주기 피로수명 증가)

  • Kim, Dae Whan;Han, Chang Hee;Lee, Bong Sang
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.7
    • /
    • pp.391-396
    • /
    • 2009
  • Tensile, low cycle fatigue, and fatigue crack growth rate tests were conducted at RT and $300^{\circ}C$ for type 304 stainless steel. Tensile was tested under displacement control and low cycle fatigue was tested under strain control. Fatigue crack growth rate test was conducted under load control and crack was measured by DCPD method. Yield strength and elongation decreased at $300^{\circ}C$. Dynamic strain aging was not detected at $300^{\circ}C$. Low cycle fatigue life increased but fatigue strength decreased at $300^{\circ}C$. Fatigue crack growth rate increased at $300^{\circ}C$. Dislocation structures were mixed with cell and planar and did not change with temperature. Grain size did not change but plastic strain increased at $300^{\circ}C$. Strain induced martensite after low cycle fatigue test increased at RT but decreased at $300^{\circ}C$. It was concluded that the increase of low cycle fatigue life at $300^{\circ}C$ was due to the decrease of strain induced martensite at which crack was initiated.

A Study on Thermal Cycle Characteristics of Solid Oxide Fuel Cell (고체 산화물 연료전지의 열사이클 따른 성능 열화 특성 연구)

  • Kim, Eung-Yong;Song, Rak-Hyun;Jeon, Kwang-Sun;Shin, Dong-Ryul;Kang, Thae-Khapp
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1312-1314
    • /
    • 1998
  • SOFC system is often subject to thermal cycle condition during normal start/stop, shutdown, and emergence state. Under the thermal cycle condition of heating and cooling, the SOFC components expand or shrink, which produces thermal stress and thermal shock. The SOFC performance is degraded by the thermal factors. To protect SOFC system from the thermal degradation, the optimum thermal condition must be clarified. In this study, to examine the thermal cycle characteristics, we fabricated single cells of planar SOFC with an area of $5{\times}5cm$. The electrolyte and PEN were tested under thermal cycle conditions in the range of$ 2-8^{\circ}C/min$. After thermal cycle test. crack creation of the components were examined using ultraviolet apparatus. No crack in the electrolyte and PEN were observed. The single cell system with alumina frame were also tested under thermal cycle conditions of 2, 3, $4^{\circ}C/min$. The single cell was fractured at the thermal cycle of 3 and $4^{\circ}C/min$ and the optimum condition of the thermal cycle to be found below $2^{\circ}C/min$.

  • PDF

Performance Characteristics of New LNG Liquefaction Cycles with Temperature Differences in the Heat Exchangers (열교환기 온도차에 따른 새로운 LNG 액화사이클의 성능 특성)

  • Yoon, Jung-In;Son, Chang-Hyo
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.51-56
    • /
    • 2014
  • In this paper, the performance of the $CO_2-C_2H_6-N_2$ cascade liquefaction cycle with respect to temperature differences in the LNG heat exchangers is analyzed theoretically using HYSYS software and then compared the COP(coefficient of performance) of the cascade liquefaction cycles using $C_3H_8-C_2H_4-C_1H_4$ and $CO_2-N_2O-N_2$. In comparison of COP of three cycles, the cascade liquefaction cycles using $C_3H_8-C_2H_4-C_1H_4$ showed the highest COP. And the liquefaction cycle using $CO_2-C_2H_6-N_2$ and $CO_2-N_2O-N_2$ presented the second and third highest COP, respectively. In case of COP, the $C_3H_8-C_2H_4-C_1H_4$ cascade liquefaction cycle yields better COP. But, in terms of the environment and maintain, it is confirmed that the cascade liquefaction cycle using $CO_2-C_2H_6-N_2$ provides favorable characteristics.