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Abstract. The vertex set of a digraph D is denoted by V (D). A c-partite tournament is

an orientation of a complete c-partite graph. A digraph D is called cycle complementary

if there exist two vertex disjoint cycles C1 and C2 such that V (D) = V (C1) ∪ V (C2),

and a multipartite tournament D is called weakly cycle complementary if there exist

two vertex disjoint cycles C1 and C2 such that V (C1) ∪ V (C2) contains vertices of all

partite sets of D. The problem of complementary cycles in 2-connected tournaments was

completely solved by Reid [4] in 1985 and Z. Song [5] in 1993. They proved that every

2-connected tournament T on at least 8 vertices has complementary cycles of length t and

|V (T )| − t for all 3 ≤ t ≤ |V (T )|/2. Recently, Volkmann [8] proved that each regular

multipartite tournament D of order |V (D)| ≥ 8 is cycle complementary. In this article,

we analyze multipartite tournaments that are weakly cycle complementary. Especially, we

will characterize all 3-connected c-partite tournaments with c ≥ 3 that are weakly cycle

complementary.

1. Terminology

In this paper all digraphs are finite without loops and multiple arcs. The vertex
set and the arc set of a digraph D are denoted by V (D) and E(D), respectively. If
xy is an arc of a digraph D, then we write x → y and say x dominates y, and if
X and Y are two disjoint vertex sets or subdigraphs of D such that every vertex
of X dominates every vertex of Y , then we say that X dominates Y , denoted by
X → Y . Furthermore, X ; Y denotes the fact that there is no arc leading from Y
to X.

If D is a digraph, then the out-neighborhood N+
D (x) = N+(x) of a vertex x is

the set of vertices dominated by x and the in-neighborhood N−
D (x) = N−(x) is the

set of vertices dominating x. Therefore, if the arc xy ∈ E(D) exists, then y is an
outer neighbor of x and x is an inner neighbor of y. The numbers d+

D(x) = d+(x) =
|N+(x)| and d−D(x) = d−(x) = |N−(x)| are called the outdegree and the indegree of
x, respectively. Furthermore, the numbers δ+

D = δ+ = min{d+(x)|x ∈ V (D)} and
δ−D = δ− = min{d−(x)|x ∈ V (D)} are the minimum outdegree and the minimum
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indegree, respectively.
For a vertex set X of D, we define D[X] as the subdigraph induced by X. If

we replace in a digraph D every arc xy by yx, then we call the resulting digraph
the converse of D, denoted by D−1.

If we speak of a cycle, then we mean a directed cycle, and a cycle of length n
is called an n-cycle. The length of a cycle C is denoted by L(C). A digraph D is
called pancyclic if it contains cycles of length n for all n ∈ {3, 4, . . . , |V (D)|}. If
x ∈ V (C) (x ∈ V (P ), respectively) for a cycle C (a path P ), then we denote the
successor of x in the given cycle (path) by x+ and the predecessor by x−. A digraph
D is cycle complementary if there exist two vertex-disjoint cycles C and C ′ such
that V (D) = V (C) ∪ V (C ′).

A digraph D is strongly connected or strong if for each pair of vertices u and
v, there is a path from u to v in D. A digraph D with at least k + 1 vertices is
k-connected if for any set A of at most k − 1 vertices, the subdigraph D − A is
strong. The connectivity, denoted by κ(D), is then defined to be the largest value
of k such that D is k-connected. If κ(D) = 1 and x is a vertex of D such that D−x
is not strong, then we say that x is a cut-vertex of D.

A digraph D is called c-partite, if its underlying graph G is c-partite. Espe-
cially, a c-partite or multipartite tournament is an orientation of a complete c-
partite graph. A tournament is a c-partite tournament with exactly c vertices. If
V1, V2, · · · , Vc are the partite sets of a c-partite tournament D and the vertex x
of D belongs to the partite set Vi, then we define V (x) = Vi. If D is a c-partite
tournament with the partite sets V1, V2, . . . , Vc such that |V1| ≤ |V2| ≤ · · · ≤ |Vc|,
then |Vc| = α(D) is the independence number of D.

2. Introduction and preliminary results

There is an extensive literature about the existence of complementary cycles
in digraphs. In 1985, Reid investigated 2-connected tournaments. In this class of
digraphs he found an example of a 3-connected regular tournament with seven ver-
tices, which is not cycle complementary.

Example 2.1(Reid [4]). Let T7 be the 3-regular and 3-connected tournament pre-
sented in Figure 1. Then it is well-known that T7 doesn’t contain a 3-cycle C3 and
a 4-cycle C4 such that V (T7) = V (C3) ∪ V (C4).

The tournament T7 is the sole exception of a 2-connected tournament with at
least 6 vertices that is not cycle complementary.

Theorem 2.2(Reid [4]). Let T be a 2-connected tournament with at least n ≥ 6
vertices. Then either T contains a 3-cycle and an (n − 3)-cycle which are vertex
disjoint or T is the 7-tournament T7.

In 1993, Song [5] extended this result.

Theorem 2.3(Song [5]). If T is a 2-connected tournament with at least eight



Weakly complementary cycles in 3-connected multipartite tournaments 289

vertices, then T contains two complementary cycles of length t and |V (T )| − t for
all 3 ≤ t ≤ |V (T )|/2.
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Figure 1: The 3-regular, 3-connected tournament T7

The problem of complementary cycles in multipartite tournaments is much more
difficult to analyze than in tournaments. This is why up to now only regular mul-
tipartite tournaments were considered. Even not all digraphs of this class are cycle
complementary as the following example demonstrates.

Example 2.4(Volkmann [8]). Let V1 = {x1, x2}, V2 = {y1, y2} and V3 = {u1, u2}
be the partite sets of the 2-connected 3-partite tournament D3,2 presented in Figure
2. Then it is a simple matter to verify that D3,2 doesn’t contain two vertex disjoint
cycles.
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Figure 2: The 2-connected 3-partite tournament D3,2

In 2004, Volkmann [8] proved the following result for regular multipartite tour-
naments.

Theorem 2.5(Volkmann [8]). Let D be a regular c-partite tournament. If c = 2
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and |V (D)| ≥ 8 or c ≥ 3 and |V (D)| ≥ 6, then D is cycle complementary, unless
D is isomorphic to T7 in Figure 1 or to D3,2 in Figure 2.

This theorem could make believe that the following conjecture of Yeo [11] is
valid.

Conjucture 2.6(Yeo [11]). A regular c-partite tournament D with c ≥ 4 has a pair
of vertex disjoint cycles of length t and |V (D)| − t for all t ∈ {3, 4, · · · , |V (D)| − 3}.

In [10], Volkmann showed that this conjecture is valid for t = 3 with exception
of three special digraphs. Moreover, in this article and in [9] he treated the case
that t = 4 in Conjecture 2.6. And in a recent article Korneffel, Meierling, Volkmann
and Winzen [3] have shown that Conjecture 2.6 is true for t = 5.

There is still another unsolved conjecture by Volkmann [7] concerning comple-
mentary cycles.

Conjucture 2.7(Volkmann [7]). A multipartite tournament D with κ(D) ≥
α(D) + 1 is cycle complementary, unless D is a member of a finite family of multi-
partite tournaments.

The aim of this article is to weaken the condition that D is cycle complementary
in the following way.

Definition 2.8. Let D be a c-partite digraph with the partite sets V1, V2, · · · , Vc.
Two vertex disjoint cycles C and C ′ are called weakly complementary, if they contain
vertices of all partite sets of D, which means that (V (C) ∪ V (C ′)) ∩ Vi 6= ∅ for all
1 ≤ i ≤ c and V (C) ∩ V (C ′) = ∅. A c-partite digraph D with such two cycles is
weakly cycle complementary.

Note that a tournament is weakly cycle complementary, if and only if it is cycle
complementary. This definition leads to a new problem.

Problem 2.9. Find necessary and/or sufficient conditions for a c-partite digraph
to be weakly cycle complementary.

Using the weaker Definition 2.8 of cycle complementarity it is possible to charac-
terize k-connected multipartite tournaments which are weakly cycle complementary.
Especially, in this article we will prove that a 3-strong c-partite tournament D with
c ≥ 3 and at least six vertices is weakly cycle complementary unless D is isomor-
phic to T7 in Figure 1. The following results play an important role to prove this
characterization.

Theorem 2.10(Bondy [1]). Each strong c-partite tournament contains an m-cycle
for each m ∈ {3, 4, · · · , c}.
Theorem 2.11(Goddard, Oellermann [2]). Let D be a strongly connected mul-
tipartite tournament with the partite sets V1, V2, · · · , Vc. Then every vertex of
D belongs to a cycle that contains vertices from exactly m partite sets for each
m ∈ {3, 4, · · · , c}.



Weakly complementary cycles in 3-connected multipartite tournaments 291

Corollary 2.12. Every vertex of a strongly connected c-partite tournament D with
c ≥ 2 belongs to a cycle that contains vertices from all c partite sets.

In the following we call a cycle containing the vertex x0 and vertices from all
partite sets of a multipartite tournament a GodOel-cycle C(x0).

Theorem 2.13(Tewes, Volkmann [6]). If D is a non-strong c-partite tournament
with the partite sets V1, V2, · · · , Vc, then there exists a unique decomposition of V (D)
into pairwise disjoint subsets D1, D2, · · · , Dp, where Di is the vertex set of a strong
component of D or Di ⊆ Vl for some l ∈ {1, 2, · · · , c} such that Di ; Dj for
1 ≤ i < j ≤ p and there are xi ∈ Di and xi+1 ∈ Di+1 such that xi → xi+1 for
1 ≤ i < p.

3. Main result

Theorem 3.1. Let D be a c-partite tournament with c ≥ 3, |V (D)| ≥ 6 and
κ(D) ≥ 3. Then D is weakly cycle complementary unless D is isomorphic to T7 in
Figure 1.

Proof. Let D be a c-partite tournament with c ≥ 3, |V (D)| ≥ 6 and κ(D) ≥ 3.
According to Theorem 2.10, D contains a 3-cycle C = v1v2v3v1. Let D − V (C)
consist of the partite sets V1, V2, · · · , Vc′ .

First, let κ(D) ≥ 4. In this case D − V (C) is strong and thus it contains a
GodOel-cycle C ′. Since C and C ′ are two vertex disjoint cycles in D with vertices
from all partite sets, we conclude that D is weakly cycle complementary.

Second, we may assume that κ(D) = 3. If D − V (C) is strong, then as above
we see that D is weakly cycle complementary. Hence let D − {v1, v2, v3} be non-
strong. Theorem 2.13 implies that there is a unique decomposition of V (D)−V (C)
in subsets D1, D2, · · · , Dp, where Di is the vertex set of a strong component of
D−V (C) or Di ⊆ Vl for some l ∈ {1, 2, · · · , c′} such that Di ; Dj for 1 ≤ i < j ≤ p
and there are xi ∈ Di and xi+1 ∈ Di+1 such that xi → xi+1 for 1 ≤ i < p. Suppose
that D is not weakly cycle complementary.

If D1 is an independent set of vertices and there are vertices v′1 ∈ D1 and
vi ∈ V (C) such that v′1 ; vi (without loss of generality, let i = 1), then the fact
that d−D−{v2,v3}(v

′
1) = 0 yields that D − {v2, v3} is not strong, a contradiction to

κ(D) = 3. Hence it remains to treat the case that V (C) → D1, if D1 ⊆ Vj for
some 1 ≤ j ≤ c′. Analogously, we see that Dp → V (C), if Dp is an independent set
of vertices. If D1 is the vertex set of a strong component with |D1| ≥ 3, then the
fact that κ(D) ≥ 3 implies that there are three pairwise non-incident arcs leading
from V (C) to D1. Analogously, if Dp is the vertex set of a strong component with
|Dp| ≥ 3, then there are three pairwise non-incident arcs leading from Dp to V (C).

To prove this theorem we distinguish different cases.

Case 1. Assume that there are at least two vertex sets in D1, D2, · · · , Dp that
induce a non-trivial strong component.
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Subcase 1.1. Assume that at least one of these vertex sets is Di with 1 < i < p. Let
x1 ∈ N+(v1) ∩D1 and y1 ∈ N−(v2) ∩Dp. Let us define C1 = C(x1) if D[D1] is a
non-trivial strong component and C1 = x1 otherwise. Analogously, let Cp = C(y1)
if D[Dp] is a non-trivial strong component and Cp = y1 otherwise. Similarly, we
define Cj (2 ≤ j ≤ p − 1) as an arbitrary GodOel-cycle of D[Dj ], if Dj induces a
non-trivial strong component and Cj = v′j with v′j ∈ Dj otherwise. Now it is obvious
that Ci and (v1C1C2 · · ·Ci−1Ci+1 · · ·Cpv2v3v1 or v1C1C2 · · ·Ci−2Ci+1 · · ·Cpv2v3v1

or v1C1C2 · · ·Ci−1Ci+2 · · ·Cpv2v3v1) are two weakly complementary cycles of D, if
we interpret the second cycle in the following way:

If D1 is the vertex set of a non-trivial strong component, then we walk from v1

to x1 and along the cycle C1 until we reach the vertex x−1 and then we walk to a
vertex of C2. If however D2 is an independent set of vertices such that v′2 ∈ V (x−1 )
for all v′2 ∈ D2, then we walk along the cycle C1 until x−−1 . In the case that D1 is
an independent set of vertices we walk from v1 to x1 and then to a vertex of D2.

If we arrive at the vertex v′j of a GodOel-cycle Cj , then we walk along the
cycle until we reach the vertex v′−j and then we pass over to a vertex of the next
component. In the case that the next component is an independent set of vertices
that belong to the same partite set as v′−j then we stop at the vertex v′−−j and pass
over to the next component.

Finally, if Dp induces a non-trivial strong component, then we pay attention
that we reach the cycle Cp in the vertex y+

1 , then we walk the cycle along until y1

and pass over to v2, v3 and we finish the cycle with v1.
These two cycles lead to a contradiction to our assumption that D is not weakly

cycle complementary.

Subcase 1.2. Assume that only the two vertex sets D1 and Dp induce a non-trivial
strong component. Let v1 → xs, v2 → xt and v3 → xm be the three pairwise
non-incident arcs leading from V (C) to D1. Analogously, let ys → v1, yt → v2

and ym → v3 be three pairwise non-incident arcs from Dp to V (C). Let v′i ∈ Di

(2 ≤ i ≤ p− 1). If one of the vertices xs, xt or xm does not belong to any GodOel-
cycle C1 of D1, say xs /∈ C1, then C1 and (v1xsv

′
2v
′
3 · · · v′p−1y

+
t y++

t · · · ytv2v3v1

or v1xsv
′
2v
′
3 · · · v′p−1y

++
t · · · ytv2v3v1) are two weakly complementary cycles, a con-

tradiction. Hence we have {xs, xt, xm} ⊆ V (C1). Analogously, we observe that
{ys, yt, ym} ⊆ V (Cp) for a GodOel-cycle Cp of D[Dp].

Subcase 1.2.1. Assume that p = 2.

Subcase 1.2.1.1. Assume that xt is on the oriented path along C1 from xm to
xs and that ym is on the path along C2 from ys to yt. Then we have one
of the cycles v1xsx

+
s · · ·x−t y+

t y++
t · · · ymv3v1 and v1xsx

+
s · · ·x−−t y+

t y++
t · · · ymv3v1.

Let this cycle be called C ′1. If we are not in the case that x+
t = xs, y+

m = yt

and V (xt) = V (yt), then there are the cycles v2xtx
+
t · · ·x−s y+

my++
m · · · ytv2 or

v2xtx
+
t · · ·x−−s y+

my++
m · · · ytv2 or v2xtx

+
t · · ·x−s y++

m · · · ytv2 and C ′1, which contain
vertices from all partite sets of D, a contradiction.

Hence, let x+
t = xs, y+

m = yt and V (xt) = V (yt). Now we have one of
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the cycles v1v2xtx
+
t · · ·x−myty

+
t · · · ysv1 and v1v2xtx

+
t · · ·x−−m yty

+
t · · · ysv1. Let this

cycle be called C ′′1 . If we are not in the case that x+
m = xt, y−m = ys and

V (xm) = V (ym), then D contains one of the cycles v3xmx+
m · · ·x−t y+

s y++
s · · · ymv3,

v3xmx+
m · · ·x−−t y+

s y++
s · · · ymv3 and v3xmx+

m · · ·x−t y++
s · · · ymv3. This cycle and C ′′1

are weakly complementary cycles, a contradiction.
Hence, let x+

m = xt, y−m = ys and V (xm) = V (ym). Now we have the cy-
cle C ′′′1 = v2v3xmxtv2. If we are not in the case that x+

s = xm, y+
t = ys and

V (xs) = V (ys), then D contains one of the cycles v1xsx
+
s · · ·x−my+

t y++
t · · · ysv1,

v1xsx
+
s · · ·x−−m y+

t y++
t · · · ysv1 and v1xsx

+
s · · ·x−my++

t · · · ysv1. This cycle and C ′′′1

are weakly complementary cycles a contradiction.
Hence, let x+

s = xm, y+
t = ys and V (xs) = V (ys). But this implies that

|V (C1)| = |V (C2)| = 3 and C1 and C2 consist of vertices from the same partite
sets. Consequently we arrive at the weakly complementary cycles C1 and C, also a
contradiction.

Subcase 1.2.1.2. Assume that xt is on the path along C1 from xs to xm and
that ym is on the path along C2 from ys to yt. Then there is one of the cy-
cles v2xtx

+
t · · ·x−s y+

my++
m · · · ytv2 and v2xtx

+
t · · ·x−−s y+

my++
m · · · ytv2, say this cycle

is C ′1. Furthermore, there is one of the cycles v3v1xsx
+
s · · ·x−t y+

t y++
t · · · ymv3 and

v3v1xsx
+
s · · ·x−t y++

t · · · ymv3. This cycle and C ′1 are weakly complementary cycles,
a contradiction.

Subcase 1.2.1.3. Assume that xt is on the path along C1 from xs to xm and
that ym is on the path along C2 from yt to ys. Then there is one of the cycles
v2xtx

+
t · · ·x−s y+

my++
m · · · ytv2 and v2xtx

+
t · · ·x−s y++

m · · · ytv2. Say this cycle is C ′1. If
we are not in the case that x+

s = xt, y+
t = ym and V (xs) = V (ym), then D has one

of the cycles v3v1xsx
+
s · · ·x−t y+

t y++
t · · · ymv3, v3v1xsx

+
s · · ·x−−t y+

t y++
t · · · ymv3 and

v3v1xsx
+
s · · ·x−t y++

t · · · ymv3. This cycle and C ′1 are weakly complementary cycles
of D, a contradiction.

Hence, let x+
s = xt, y+

t = ym and V (xs) = V (ym). Now we have one of
the cycles v1xsx

+
s · · ·x−mymy+

m · · · ysv1 and v1xsx
+
s · · ·x−−m ymy+

m · · · ysv1. Let this
cycle be called C ′′1 . If we are not in the case that x+

m = xs, y+
s = yt and

V (xm) = V (yt), then there is one of the cycles v2v3xmx+
m · · ·x−s y+

s y++
s · · · ytv2,

v2v3xmx+
m · · ·x−−s y+

s y++
s · · · ytv2 and v2v3xmx+

m · · ·x−s y++
s · · · ytv2. This cycle and

C ′′1 are weakly complementary cycles, a contradiction.
Hence, let x+

m = xs, y+
s = yt and V (xm) = V (yt). Then D contains the cy-

cle C ′′′1 = v3xmymv3. If we are not in the case that x+
t = xm, y+

m = ys and
V (xt) = V (ys), then there is one of the cycles v1v2xtx

+
t · · ·x−my+

my++
m · · · ysv1,

v1v2xtx
+
t · · ·x−−m y+

my++
m · · · ysv1 and v1v2xtx

+
t · · ·x−my++

m · · · ysv1. This cycle and
C ′′′1 are weakly cycle complementary.

Hence, let x+
t = xm, y+

m = ys and V (xt) = V (ys). This is possible only if
|V (C1)| = |V (C2)| = 3 and both cycles contain vertices from the same partite
sets. Consequently, we deduce that C and C1 are weakly complementary cycles, a
contradiction.
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Subcase 1.2.1.4. Assume that xt is on the path along C1 from xm to xs

and that ym is on the path along C2 from yt to ys. Then D contains
v1v2xtx

+
t · · ·x−my+

my++
m · · · ysv1 or v1v2xtx

+
t · · ·x−−m y+

my++
m · · · ysv1, say this cycle

is C ′1. Furthermore, there is one of the cycles v3xmx+
m · · ·x−t y+

s y++
s · · · ymv3 and

v3xmx+
m · · ·x−t y++

s · · · ymv3. This cycle and C ′1 are weakly complementary cycles, a
contradiction.

Subcase 1.2.2. Assume that p ≥ 3. If all partite sets appearing in D2∪D3∪· · ·∪Dp−1

also appear in D1 or Dp or V (C), then we find the same weakly complementary
cycles as in Subcase 1.2.1. If there are vertices of new partite sets in D2 ∪ D3 ∪
· · · ∪Dp−1, then it is easy to see that these vertices can be inserted into the cycles
of Subcase 1.2.1.

Case 2. Assume that there is exactly one vertex set Di (1 ≤ i ≤ p), which induces
a non-trivial strong component of D − V (C).

Subcase 2.1. Assume that 1 < i < p. Let Ci be an arbitrary GodOel-cycle
of Di and let v′j ∈ Dj for all j ∈ {1, 2, · · · , p} \ {i}. If p ≥ 4 or V (v′1) 6=
V (v′p), then D contains one of the cycles v′1v

′
2 · · · v′i−1v

′
i+1v

′
i+2 · · · v′pv1v2v3v

′
1,

v′1v
′
2 · · · v′i−2v

′
i+1v

′
i+2 · · · v′pv1v2v3v

′
1 and v′1v

′
2 · · · v′i−1v

′
i+2v

′
i+3 · · · v′pv1v2v3v

′
1. This

cycle and Ci are weakly complementary cycles, a contradiction. Hence, let p = 3
and V (v′1) = V (v′3).

Suppose that |D1|, |D3| ≥ 2 with {v′1, v′′1} ⊆ D1 and {v′3, v′′3} ⊆ D3. Let
xi ∈ V (Ci) be arbitrary such that xi /∈ V (v′1). Then D contains the cycle
C ′1 = v′1xiv

′
3v1v

′
1. Furthermore there is one of the cycles v′′1x+

i x++
i · · ·x−i v′′3 v2v3v

′′
1 ,

v′′1x++
i · · ·x−i v′′3 v2v3v

′′
1 , v′′1x+

i x++
i · · ·x−−i v′′3 v2v3v

′′
1 and v′′1x++

i · · ·x−−i v′′3 v2v3v
′′
1 . This

cycle and C ′1 are weakly complementary in D, a contradiction.
It follows that |D1| = 1 or |D3| = 1. Without loss of generality, let D3 = {v′3}.

Suppose that |D1| ≥ 2 and {v′1, v′′1} ⊆ D1. Because of κ(D) ≥ 3 we conclude that
there are vertices xj ∈ D2 and vm ∈ V (C) such that xj → vm, say xj → v1. Let
C2 = C2(xj). If xj /∈ V (v′1), then there is the cycle C ′1 = v′1xjv1v

′
1. Further-

more D contains one of the cycles v′′1x+
j x++

j · · ·x−j v′3v2v3v
′′
1 , v′′1x++

j · · ·x−j v′3v2v3v
′′
1 ,

v′′1x+
j x++

j · · ·x−−j v′3v2v3v
′′
1 and v′′1x++

j · · ·x−−j v′3v2v3v
′′
1 . This cycle and C ′1 are

weakly complementary cycles, a contradiction. If xj ∈ V (v′1), then D contains
the weakly complementary cycles C and C2, also a contradiction.

Hence, it remains to treat the case that D1 = {v′1} and D3 = {v′3}. Let C2 be
a GodOel-cycle of D[D2]. If there is a vertex v′2 ∈ D2 such that v′1 ∈ V (v′2), then
C and C2 are two weakly complementary cycles a contradiction. Consequently, let
v′1 /∈ V (v′2) for all v′2 ∈ D2. Suppose that there is a vertex v′2 ∈ D2 − V (C2).
Then D contains the weakly complementary cycles C2 and v1v

′
1v
′
2v
′
3v2v3v1, also a

contradiction. Hence, let D2 = V (C2). Since κ(D) = 3 there are vertices xj ∈ D2

and vm ∈ V (C) such that xj → vm. If there is a vertex xp ∈ D2 with xp 6= xj

and xp 6= x+
j such that v+

m → xp or vm → xp, then D contains the weakly comple-
mentary cycles xpx

+
p · · ·xjvmv+

mxj and v′1x
+
j x++

j · · ·x−p v′3v
−
mv′1 or xpx

+
p · · ·xjvmxp

and v′1x
+
j x++

j · · ·x−p v′3v
+
mv−mv′1, in both cases a contradiction. If v+

m → xj , then we



Weakly complementary cycles in 3-connected multipartite tournaments 295

find the two weakly complementary cycles xjvmv+
mxj and v′1x

+
j x++

j · · ·x−j v′3v
+
mv−mv′1,

also a contradiction. Altogether, we see that (D2−{x+
j }) ; {vm, v+

m}. Since every
vertex of V (C) has an outer neighbor in D2 we conclude that {vm, v+

m} → x+
j .

Moreover, we obviously have xj → v+
m or x−j → v+

m and xj ∈ V (v+
m).

First, let xj → v+
m. Analogously as above and noticing that v++

m = v−m we
deduce that in this case (D2 − {x+

j }) ; v−m → x+
j , and thus

{vm, v+
m, v−m} → x+

j → x++
j ; {vm, v+

m, v−m}.
Now D − {v′1, x+

j } is not strong, a contradiction to κ(D) = 3.
Second, let x−j → v+

m and xj ∈ V (v+
m). Analogously as above and noticing that

v++
m = v−m we conclude that (D2−{xj}) ; v−m → xj , and thus D contains the weakly

complementary cycles x−j v+
mx+

j x++
j · · ·x−j and v′1xjv

′
3v
−
mvmv′1, a contradiction.

Subcase 2.2. Assume that i = 1. If there is an arc leading from V (C) to D2,
say v3 → v′2, then there are the weakly complementary cycles v1v2v3v

′
2v
′
3 · · · v′pv1

and the GodOel-cycle of D1, a contradiction. Hence, let D2 ; V (C). If there
are vertices vm ∈ V (C) and v′1 ∈ D1 such that vm → v′1 and v′1 is not contained
in a GodOel-cycle C1 of D[D1], then C1 and vmv′1v

′
2 · · · v′pv+

mv−mvm are two weakly
complementary cycles of D, also a contradiction. Consequently, let all vertices
v′1 ∈ D1 that are outer neighbors of a vertex of V (C) be on every GodOel-cycle of
D[D1].

Subcase 2.2.1. Assume that p ≥ 3. Furthermore, let C ′ = x1x2 · · ·xlx1 be a
GodOel-cycle of D[D1]. Since κ(D) = 3 there are three pairwise non-incident arcs
leading from V (C) to D1, say v1 → xs, v2 → xt and v3 → xu.

Subcase 2.2.1.1. Assume that xu is on the path along C ′ from xs to xt. If v3 /∈ V (v′2),
then there is one of the cycles v1xsx

+
s · · ·x−t v′2v3v1 and v1xsx

+
s · · ·x−−t v′2v3v1,

and if v3 ∈ V (v′2), then D contains one of the cycles v1xsx
+
s · · ·x−t v′2v1 and

v1xsx
+
s · · ·x−−t v′2v1. In any case, let this cycle be called C ′′. If x−s /∈ V (v′p) or if x−s ∈

V (v′p) and p ≥ 4, then C ′′ and v2xtx
+
t · · ·x−s v′3v

′
4 · · · v′pv2 or v2xtx

+
t · · ·x−s v′4 · · · v′pv2

are two weakly complementary cycles, a contradiction. If p = 3, x−s ∈ V (v′3) and
x−s 6= xt, then C ′′ and v2xtx

+
t · · ·x−−s v′3v2 are weakly complementary cycles of

D, also a contradiction. Consequently, let p = 3, x−s ∈ V (v′3) and x−s = xt. If
v2 ∈ V (v′2), then C and C ′ are two weakly complementary cycles of D, a contra-
diction. Hence, let v2 /∈ V (v′2). But now we arrive at the weakly complementary
cycles v1xsx

+
s · · ·x−t v′3v3v1 and v2xtv

′
2v2, a contradiction.

Subcase 2.2.1.2. Assume that xu is on the path along C ′ from xt to xs.
First, let v′2 ∈ V (v2). Then D contains one of the cycles v3xux+

u · · ·x−t v′2v3

and v3xux+
u · · ·x−−t v′2v3. Let this cycle be called C ′′. If p ≥ 4 or if p = 3 and

x−u /∈ V (v′3), then C ′′ and v2xtx
+
t · · ·x−u v′3v

′
4 · · · v′pv1v2 or v2xtx

+
t · · ·x−u v′4 · · · v′pv1v2

are two weakly complementary cycles, a contradiction. In the remaining case that
p = 3 and x−u ∈ V (v′3) the GodOel-cycle in D[D1] and the cycle C are two weakly
complementary cycles of D, also a contradiction.
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Second, let v′2 /∈ V (v2). Then D contains one of the cycles v2xtx
+
t · · ·x−s v′2v2

and v2xtx
+
t · · ·x−−s v′2v2. Let this cycle be called C̃. If x−t /∈ V (v′p) or if x−t ∈ V (v′p)

and p ≥ 4, then C̃ and v1xsx
+
s · · ·x−t v′3v

′
4 · · · v′pv3v1 or v1xsx

+
s · · ·x−t v′4 · · · v′pv3v1

are two weakly complementary cycles, a contradiction. If p = 3, x−t ∈ V (v′3) and
x−t 6= xs, then C̃ and v1xsx

+
s · · ·x−−t v′3v3v1 are weakly complementary cycles, also

a contradiction. Hence, let p = 3, x−t ∈ V (v′3) and x−t = xs. If v3 ∈ V (v′2) or
xs ∈ V (v′2), then C and C ′ are two weakly complementary cycles, a contradiction.
Otherwise if v3, xs /∈ V (v′2), then v2xtx

+
t · · ·x−s v′3v2 and v1xsv

′
2v3v1 are weakly

complementary cycles, again a contradiction.

Subcase 2.2.2. Assume that p = 2. If there are vertices v′2 ∈ D2 and v′1 ∈ D1

such that v′2 ∈ V (v′1), then C and the GodOel-cycle of D[D1] are weakly comple-
mentary cycles, a contradiction. Consequently, we have D1 → D2 → V (C). Let
C ′ = x1x2 · · ·xlx1 be the GodOel-cycle of D[D1]. If there are vertices vi ∈ V (C)
and v′1 ∈ (D1 − V (C ′)) such that vi → v′1, then C ′ and viv

′
1v
′
2v

+
i v−i vi are weakly

complementary cycles, a contradiction. Consequently, let (D1 − V (C ′)) ; V (C).
Because of κ(D) = 3 we observe that there are three pairwise non-incident
arcs leading from V (C) to V (C ′), say v1 → xs, v2 → xt and v3 → xu. If
|D2| ≥ 2 with {v′2, v′′2} ⊆ D2, then D contains the weakly complementary cycles
v1xsx

+
s · · ·x−t v′2v3v1 and v2xtx

+
t · · ·x−s v′′2 v2, a contradiction. Hence, let |D2| = 1.

Suppose that there are vertices vi, xj and xs with i ∈ {1, 2, 3}, j ∈ {1, 2, · · · , l}
and s ∈ {1, 2, · · · , l} \ {j − 2, j − 1, j} such that vi → xj and xj−1 →
xs. Then D contains the weakly complementary cycles xj−1xsxs+1 · · ·xj−1 and
vixjxj+1 · · ·xs−1v

′
2v

+
i v−i vi, a contradiction. This leads to

Claim 1. If l ≥ 4 and xj ∈ V (C ′) is the outer neighbor of a vertex of V (C), then
it follows that xs ; xj−1 for all s ∈ {1, 2, · · · , l} \ {j − 2, j − 1, j}.
Claim 1 immediately implies the following claim.

Claim 2. If l ≥ 4 and there are vertices vi, vm ∈ V (C) and xj , xp ∈ V (C ′)
with j /∈ {p + 1, p, p − 1} such that vi → xj and vm → xp, then it follows that
V (xj−1) = V (xp−1).

Let {xs, xt, xu} = {xp1 , xp2 , xp3}. If we pass the vertices of V (C ′) along its
orientation, then, without loss of generality, let this three vertices be appear in
the order xp1 , xp2 , xp3 such that p1 − p3 ≥ max{p3 − p2, p2 − p1} (all indices taken
modulo l). Furthermore, let {vi, vj , vm} = {v1, v2, v3} such that vi → xp1 , vj → xp2

and vm → xp3 . If p1 ≥ p3 + 3 (modulo l), then Claim 2 implies that V (xp3−1) =
V (xp1−1) and with Claim 1 we conclude that xp1−2 → xp3−1. Now we observe
that D contains the weakly complementary cycles xp1−2xp3−1xp3xp3+1 · · ·xp1−2 and
vixp1xp1+1 · · ·xp3−2v

′
2v

+
i v−i vi, a contradiction. Hence, let p1 ≤ p3 + 2 (modulo l).

This immediately yields that l ≤ 6.

Subcase 2.2.2.1. Assume that l = 6. In this case p1 ≤ p3+2 (modulo l) implies that,
without loss of generality, p1 = 1, p2 = 3 and p3 = 5. Applying Claim 2, we see
that V (x2) = V (x4) = V (x6). Furthermore, with Claim 1 it follows that x1 → x4.
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Now it is obvious that D contains the weakly complementary cycles x1x4x5x6x1

and vjx3v
′
2v

+
j v−j vj , a contradiction.

Subcase 2.2.2.2. Assume that l = 5. Then the fact that p1 ≤ p3 + 2 (modulo l)
implies that, without loss of generality, p1 = 1, p2 = 3 and p3 = 4 or p1 = 1, p2 = 2
and p3 = 4. If p1 = 1, p2 = 3 and p3 = 4, then Claim 2 implies that V (x3) = V (x5)
and V (x2) = V (x5), a contradiction. And if p1 = 1, p2 = 2 and p3 = 4, then Claim
2 yields V (x3) = V (x1) and V (x3) = V (x5), also a contradiction.

Subcase 2.2.2.3. Assume that l = 4. Without loss of generality, we may suppose
that p1 = 1, p2 = 2 and p3 = 3. Claim 2 yields V (x2) = V (x4) and with Claim 1
we conclude that x3 → x1 or x3 ∈ V (x1).

First, let x3 → x1. Then we conclude that x4 ; V (C) since otherwise if there is
a vertex vl ∈ V (C) such that vl → x4, then D contains the weakly complementary
cycles vlx4v

′
2v

+
l v−l vl and x1x2x3x1, a contradiction. Let vm ∈ V (C) such that

vm → x2. Then D contains the cycle C ′′ := vmx2x3x4vm. If v−m → x1, then C ′′

and v−mx1v
′
2v

+
mv−m are weakly complementary cycles, a contradiction. Hence, let

x1 ; v−m, and thus v−m → x3 and v+
m → x1. If x4 → v−m, then x4v

−
mx3x4 and

vmv+
mx1v

′
2vm contain all partite sets of D, a contradiction. Consequently, we have

V (x4) = V (v−m). But now D contains the weakly complementary cycles C ′′ and
v+

mx1v
′
2v

+
m, a contradiction.

Second, let x3 ∈ V (x1). Suppose that there is a vertex v′1 ∈ (D1 − V (C ′)).
Then v′1 is on a GodOel-cycle C̃ of D[D1]. If |V (C̃)| ≥ 6, then with Subcase 2.2.2.1
we arrive at a contradiction. Hence, let |V (C̃)| = 4. Since (D1 − V (C̃)) ; V (C)
and (D1 − V (C ′)) ; V (C), we conclude that v′1 ∈ V (x4) and V (C̃) = (V (C ′) ∪
{v′1}) \ {x4}. So in any case, if D1 − V (C ′) is empty or not, we observe that
d+

D−V (C)(x2) = d+
D−V (C)(x4) = 2, and thus x2 as well as x4 has an outer neighbor

in V (C). Without loss of generality, let v1 → x1.
Assume that v2 → x3 and v3 → x2. If x3 → v1, then the cycles x3v1v2x3 and

v3x2v
′
2v3 contain vertices from all partite sets of D, a contradiction. Hence, let

v1 → x3. If x4 → v1, then D contains the weakly complementary cycles x4v1x3x4

and v2v3x2v
′
2v2, also a contradiction. Consequently, we have v1 ; x4. If x4 → v3

and v1 /∈ V (x4), then x4v3v1x4 and v2x3v
′
2v2 are weakly complementary cycles,

a contradiction. If v1 ∈ V (x4) and x1 → v2, then x1v2x3x4x1 and v3x2v
′
2v3 are

weakly complementary cycles, a contradiction. Hence let v2 → x1 in this case. If
x4 → v3 and v1 ∈ V (x4), then the cycles x4v3x2x3x4 and v2x1v

′
2v2 contain vertices

from all partite sets, also a contradiction. Hence, in all cases we observe that
v3 → x4. Consequently, v2 is an outer neighbor of x4. But now D contains the
weakly complementary cycles x4v2v3x4 and v1x1v

′
2v1, a contradiction.

Assume that v2 → x2 and v3 → x3. If x1 → v3, then D contains the weakly
complementary cycles x1v3v1x1 and v2x2v

′
2v2, a contradiction. Hence, let v3 → x1.

If x4 → v3, then x4v3x3x4 and v1v2x2v
′
2v1 are weakly complementary cycles of D,

also a contradiction. Consequently, we deduce that v3 ; x4. If x2 → v1, then D
contains the cycles v1v2x2v1 and v3x1v

′
2v3, a contradiction. Hence, let v1 ; x2.

If v1 ∈ V (x2), then v2 has to be an outer neighbor of x4 and x4v2x2x3x4 and
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v3x1v
′
2v3 contain vertices from all partite sets of D, a contradiction. Hence, let

v1 /∈ V (x2), and thus v1 → x2. If x4 → v1, then x4v1x2x3x4 and v3x1v
′
2v2v3 are

weakly complementary cycles of D, a contradiction. Consequently, let v1 → x4

and v2 is an outer neighbor of x4. This yields the weakly complementary cycles
x4v2v3x3x4 and v1x2v

′
2v1, a contradiction.

Subcase 2.2.2.4. Assume that l = 3.
First, let there be a vertex v′1 ∈ (D1− V (C ′)). Then v′1 is on a GodOel-cycle C̃

of D[D1]. If |V (C̃)| ≥ 4, then the previous subcases yield a contradiction. Hence,
let |V (C̃)| = 3, and thus xi ∈ (V (C ′) − V (C̃)) for an 1 ≤ i ≤ 3. If vj → xi, then
vjxiv

′
2v

+
j v−j vj and C̃ are weakly complementary cycles, a contradiction.

Second, let D1 = V (C ′). In this case, D is a tournament of order seven and
Theorem 2.2 implies that D is cycle complementary and thus weakly cycle com-
plementary unless D is the tournament T7 of Example 2.1. The tournament T7 is
3-connected and not (weakly) cycle complementary.

Subcase 2.3. Assume that i = p. Observing the converse D−1 of D Subcase 2.2
yields a contradiction.

Case 3. Assume that Di is a set of independent vertices for all 1 ≤ i ≤ p. As seen
above, it follows that Dp → V (C) → D1, and obviously we have Di → Di+1 for
all 1 ≤ i ≤ p − 1. In the following, if we speak of a vertex v′i, then we mean that
v′i ∈ Di.

First, we assume that |D1| ≥ 2 and |Dp| ≥ 2 such that {v′1, v′′1} ⊆ D1 and
{v′p, v′′p} ⊆ Dp. If the vertices of D1 and Dp belong to different partite sets, then D
contains the weakly complementary cycles v′1v

′
pv1v

′
1 and v′′1 v′2v

′
3 · · · v′p−1v

′′
pv2v3v

′′
1 ,

a contradiction. Hence, we have to analyze the case that v′1 ∈ V (v′p). The fact
that κ(D) = 3 implies that |D2 ∪ D3 ∪ · · ·Dp−1| ≥ 3. If p = 3, then v′1v

′
2v
′
3v1v

′
1

and v′′1 v′′2 v′′3 v2v3v
′′
1 are weakly complementary cycles, if p = 4, then v′1v

′
2v
′
4v1v

′
1

and v′′1 v′3v
′′
4 v2v3v

′′
1 are weakly complementary cycles, and if p ≥ 5, then v′1v

′
2v
′
pv1v

′
1

and v′′1 v′3v
′
4 · · · v′p−1v

′′
pv2v3v

′′
1 or v′′1 v′4v

′
5 · · · v′p−1v

′′
pv2v3v1 are weakly complementary

cycles, in all cases a contradiction. Hence, it follows that |D1| = 1 or |Dp| = 1.
Without loss of generality, let |Dp| = 1. The fact that κ(D) = 3 yields that
|D2 ∪D3 ∪ · · · ∪Dp−1| ≥ 2.

Second, we assume that |D1| ≥ 2 such that {v′1, v′′1} ⊆ D1. The fact that
κ(D) = 3 implies that there are vertices v′p−1 ∈ Dp−1 and vj ∈ V (C), say j = 1,
such that v′p−1 → v1. If the vertices of D1 and Dp belong to different partite
sets, then v′1v

′
pv3v

′
1 and v′′1 v′2v

′
3 · · · v′p−1v1v2v

′′
1 contain vertices from all partite sets

of D, a contradiction. Hence, let v′1 ∈ V (v′p). If p ≥ 4, then v′1v
′
2v
′
pv3v

′
1 and

v′′1 v′3v
′
4 · · · v′p−1v1v2v

′′
1 or v′′1 v′4 · · · v′p−1v1v2v

′′
1 are weakly complementary cycles of

D and if p = 3, and thus |D2| ≥ 2, then v′1v
′′
2 v′3v2v3v

′
1 and v′′1 v′2v1v

′′
1 are weakly

complementary cycles, in all cases a contradiction.
Consequently, it remains to treat the case that |D1| = |Dp| = 1. Suppose that

p = 3. Since κ(D) = 3, we conclude that a vertex v′2 ∈ D2 has at least two outer
and two inner neighbors in V (C), a contradiction. Hence, let p ≥ 4.
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Subcase 3.1. Assume that there are vertices vi ∈ V (C), v′k ∈ Dk and v′l ∈ Dl with
2 ≤ l ≤ k ≤ p − 1 such that v′k → vi → v′l. In this case let k and l be chosen
such that k − l is minimal. Obviously, D contains the cycle C ′ = v′lv

′
l+1 · · · v′kviv

′
l.

If V (v′l−1) 6= V (v′k+1), then C ′ and v′1v
′
2 · · · v′l−1v

′
k+1v

′
k+2 · · · v′pv+

i v−i v′1 are weakly
complementary cycles, a contradiction. Hence let V (v′l−1) = V (v′k+1). If l − 1 6= 1,
then C ′ and v′1v

′
2 · · · v′l−2v

′
k+1v

′
k+2 · · · v′pv+

i v−i v′1 are weakly complementary cycles,
and if k + 1 6= p, then C ′ and v′1v

′
2 · · · v′l−1v

′
k+2v

′
k+3 · · · v′pv+

i v−i v′1 contain vertices
from all partite sets of D, in both cases a contradiction. Consequently, it remains
to treat the case that l = 2, k = p− 1 and V (v′1) = V (v′p).

If |Dm| ≥ 2 with m ∈ {2, p − 1} and v′′m ∈ Dm − {v′m}, then C ′ and
v′1v

′′
mv′pv

+
i v−i v′1 are weakly complementary cycles, a contradiction. Hence let

D2 = {v′2} and Dp = {v′p}. If p ≥ 6 or p = 5 and v′3 /∈ V (vi), then we arrive
at a contradiction to the minimality of k − l. If p = 5, v′3 ∈ V (vi) and v′2 /∈ V (v′4),
then D contains the weakly complementary cycles v′2v

′
4viv

′
2 and v′1v

′
3v
′
5v

+
i v−i v′1, a

contradiction. If p = 5, v′3 ∈ V (vi) and v′2 ∈ V (v′4), then the fact that D − {v′4, v′5}
is strongly connected implies that there is an arc leading from v′3 to {v+

i , v−i }. If
v′3 → v+

i , then v′1v
′
3v

+
i v−i v′1 and v′5viv

′
2v
′
5 are weakly complementary cycles and if

v+
i → v′3 → v−i , then v′2v

′
3v
−
i viv

′
2 and v′1v

′
4v
′
5v

+
i v′1 contain vertices from all partite

sets of D, in both cases a contradiction. Finally, if p = 4, then we arrive at the
contradiction that D − {v′2, v′3} is not strong.

Subcase 3.2. Assume that there are vertices vi ∈ V (C), v′k ∈ Dk and v′l ∈ Dl with
2 ≤ k < l ≤ p−1 such that v′k → vi → v′l. In this case let k and l be chosen such that
l−k is minimal. If v+

i → v′k, then v′kviv
+
i v′k and v′1v

′
2 · · · v′k−1v

′
k+1v

′
k+2 · · · v′pv−i v′1 or

v′1v
′
2 · · · v′k−1v

′
k+2 · · · v′pv−i v′1 are two weakly complementary cycles of D, a contradic-

tion. Hence, let v′k ; v+
i . Analogously, if v′l → v−i , then we see that v′lv

−
i viv

′
l and

v′1v
′
2 · · · v′l−1v

′
l+1v

′
l+2 · · · v′pv+

i v′1 or v′1v
′
2 · · · v′l−2v

′
l+1v

′
l+2 · · · v′pv+

i v′1 are weakly com-
plementary cycles, also a contradiction. Consequently, let v−i ; v′l. Since l − k is
minimal we conclude that l − k = 1 or l − k = 2 and vi ∈ V (v′k+1).

First let l − k = 2 and vi ∈ V (v′k+1). If v′k+1 → v+
i , then D contains the

weakly complementary cycles v′1v
′
2 · · · v′k+1v

+
i v−i v′1 and v′lv

′
l+1 · · · v′pviv

′
l, a contra-

diction. Hence, let v+
i → v′k+1. Analogously, we observe that v′k+1 → v−i . If

v−i ∈ (V (v′2)∪V (v′3)∪· · ·∪V (v′p−1)), then v′1v
′
2 · · · v′kviv

′
1 and v′k+1v

′
k+2 · · · v′pv+

i v′k+1

contain vertices from all partite sets of D, a contradiction. Consequently, let
v−i /∈ (V (v′2)∪ V (v′3)∪ · · · ∪ V (v′p−1)), and thus v−i → v′l. If v−i → v′k, then Subcase
3.1 yields a contradiction. Hence let v′k → v−i . But now D contains the weakly
complementary cycles v′1v

′
2 · · · v′kv−i v′1 and v′k+1v

′
k+2 · · · v′pv+

i v′k+1, a contradiction.
Second let l = k + 1. If v′k /∈ V (v+

i ) and thus, as seen above, v′k → v+
i ,

then v′1v
′
2 · · · v′kv+

i v−i v′1 and v′k+1v
′
k+2 · · · v′pviv

′
k+1 contain vertices from all partite

sets of D, a contradiction. Analogously, if v′k+1 /∈ V (v−i ) and thus v−i → v′k+1,
then v′1v

′
2 · · · v′kviv

+
i v′1 and v′k+1v

′
k+2 · · · v′pv−i v′k+1 are weakly complementary cycles

of D, also a contradiction. Consequently, let v′k ∈ V (v+
i ) and v′k+1 ∈ V (v−i ). If
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v+
i → v′k+1, then D contains the cycles v′1v

′
2 · · · v′kviv

′
1 and v′k+1v

′
k+2 · · · v′pv+

i v′k+1,
a contradiction. If v′k → v−i , then v′1v

′
2 · · · v′kv−i v′1 and v′k+1v

′
k+2 · · · v′pviv

′
k+1 con-

tain vertices from all partite sets of D, also a contradiction. Hence let v′k+1 → v+
i

and v−i → v′k. Now it follows that D contains the cycle C ′ = v−i v′kv′k+1v
+
i v−i .

If k 6= 2 or k 6= p − 2 or k = 2 = p − 2 and v′1 /∈ V (v′p), then C ′ and one of
the cycles v′1v

′
2 · · · v′k−1v

′
k+2v

′
k+3 · · · v′pviv

′
1 and v′1v

′
2 · · · v′k−2v

′
k+2v

′
k+3 · · · v′pviv

′
1 and

v′1v
′
2 · · · v′k−1v

′
k+3v

′
k+4 · · · v′pviv

′
1 are weakly complementary cycles of D, a contra-

diction. Hence let k = 2, p = 4 and v′1 ∈ V (v′4). If |Dm| ≥ 2 with m ∈ {2, 3},
then C ′ and v′1v

′′
mv′4viv

′
1 contain vertices from all partite sets of D, a contradiction.

Consequently we have |D2| = |D3| = 1. Now it is obvious that D − {v′2, v′3} is not
strong, a contradiction to κ(D) = 3.

Subcase 3.3. Assume that vm ;
p−1⋃
j=2

Dj or
p−1⋃
j=2

Dj ; vm for each m ∈ {1, 2, 3}.
Since D − {v′1} as well as D − {v′p} are strong, we deduce that there are vertices
vi, vj ∈ V (C) with i 6= j such that vi → v′2 and v′p−1 → vj , and thus (D2 ∪ D3 ∪
· · · ∪Dp−1) ; vj and vi ; (D2 ∪D3 ∪ · · ·Dp−1). Let vm ∈ V (C)− {vi, vj}.

Suppose that vj → vi. Then D contains the cycle C ′ = v′2v
′
3 · · · v′p−1vjviv

′
2. If

v′1 /∈ V (v′p), then D contains the weakly complementary cycles C ′ and v′1v
′
pvmv′1, a

contradiction. Hence let v′1 ∈ V (v′p). If |Dl| ≥ 2 with l ∈ {2, p − 1}, then C ′ and
v′1v

′′
l v′pvmv′1 are weakly complementary cycles of D, also a contradiction. Conse-

quently, let |D2| = |Dp−1| = 1. If p ≥ 5, then v′1v
′
2v
′
pvmv′1 and viv

′
3v
′
4 · · · v′p−1vjvi or

viv
′
4v
′
5 · · · v′p−1vjvi contain vertices from all partite sets of D, a contradiction. And

if p = 4, then D − {v′2, v′3} is not strong, a contradiction to κ(D) = 3.
Consequently, it remains to consider the case that vi → vj → vm → vi. If

vj /∈ V (v′2) and vi /∈ V (v′p−1), then D contains the weakly complementary cycles
v′1v

′
2vjvmv′1 and v′3v

′
4 · · · v′pviv

′
3 or v′4v

′
5 · · · v′pviv

′
4, a contradiction. If vj ∈ V (v′2)

and vi ∈ V (v′p−1), then it is straightforward to see that v′1v
′
p−1vjvmv′1 and

v′2v
′
3 · · · v′p−2v

′
pviv

′
2 or v′2v

′
3 · · · v′p−3v

′
pviv

′
2 are two cycles that contain vertices from

all partite sets of D, also a contradiction. Hence let vj ∈ V (v′2) and vi → v′p−1.
If v′2 → vm, then D contains the weakly complementary cycles viv

′
2vmvi and

v′1v
′
3v
′
4 · · · v′pvjv

′
1 or v′1v

′
4v
′
5 · · · v′pvjv

′
1, a contradiction. Consequently, let vm → v′2.

Now, we have two vertices vj , vm ∈ V (C) such that vm → v′2, v′p−1 → vj and
vj → vm. As above we arrive at a contradiction. Finally if v′2 → vj and
vi ∈ V (v′p−1), then observing the converse D−1 of D, we also arrive at a con-
tradiction. This completes the proof of this theorem. ¤

A direct consequence of this theorem is the following result.

Corollary 3.2. Every 3-strong c-partite tournament with c ≥ 3 and at least 8
vertices is weakly cycle complementary.

The following example presents two 2-strong c-partite tournaments with c ≥ 3
and at least 6 vertices that even do not contain two vertex disjoint cycles, and thus
no weakly complementary cycles.
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Example 3.3. The 4-partite tournament D1 and the 3-partite tournament D2 of
Figure 3 are 2-strong and do not have any two vertex disjoint cycles. Thus they do
not have two vertex disjoint cycles with vertices from all partite sets, which means
that D1 and D2 are not weakly cycle complementary.

D1 D2

Figure 3: The 2-strong multipartite tournaments D1 and D2 without
a pair of vertex disjoint cycles.

Since the authors found some more 2-strong multipartite tournaments with this
property it may become difficult to characterize all 2-strong multipartite tourna-
ments that are weakly cycle complementary. Nevertheless it would be interesting
to solve this problem.

Problem 3.4. Characterize all 2-strong c-partite tournaments D with c ≥ 3 and
|V (D)| ≥ 6 that are weakly cycle complementary.

References

[1] J. A. Bondy, Disconnected orientation and a conjecture of Las Vergnas, J. London
Math. Soc., 14(1976), 277-282.

[2] W. D. Goddard and O. R. Oellermann, On the cycle structure of multipartite tour-
naments, in: Y. Alavi, G. Chartrand, O.R. Oellermann, A.J. Schenk (Eds.), Graph
Theory Combinat. Appl., 1, Wiley Interscience, New York (1991), 525-533.

[3] T. Korneffel, D. Meierling, L. Volkmann and S. Winzen, Complementary cycles in
regular multipartite tournaments, where one cycle has length five, submitted.

[4] K. B. Reid, Two complementary circuits in two-connected tournaments, Ann. Discrete
Math., 27(1985), 321-334.



302 Lutz Volkmann and Stefan Winzen

[5] Z. Song, Complementary cycles of all length in tournaments, J. Combin. Theory Ser.
B, 57(1993), 18-25.

[6] M. Tewes and L. Volkmann, Vertex deletion and cycles in multipartite tournaments,
Discrete Math., 197-198(1999), 769-779.

[7] L. Volkmann, Cycles in multipartite tournaments: results and problems, Discrete
Math., 245(2002), 19-53.

[8] L. Volkmann, All regular multipartite tournaments that are cycle complementary,
Discrete Math., 281(2004), 255-266.

[9] L. Volkmann, Complementary cycles in regular multipartite tournaments, where one
cycle has length four, Kyungpook Math. J., 44(2004), 219-247.

[10] L. Volkmann, Complementary cycles in regular multipartite tournaments, Australas.
J. Combin., 31(2005), 119-134.

[11] A. Yeo, Diregular c-partite tournaments are vertex-pancyclic when c ≥ 5, J. Graph
theory, 32(1999), 137-152.


