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ABSTRACT. The vertex set of a digraph D is denoted by V(D). A c-partite tournament is
an orientation of a complete c-partite graph. A digraph D is called cycle complementary
if there exist two vertex disjoint cycles C1 and Cs such that V(D) = V(C1) U V(Cb),
and a multipartite tournament D is called weakly cycle complementary if there exist
two vertex disjoint cycles Ci and C2 such that V(Ci) U V(Cs) contains vertices of all
partite sets of D. The problem of complementary cycles in 2-connected tournaments was
completely solved by Reid [4] in 1985 and Z. Song [5] in 1993. They proved that every
2-connected tournament 7" on at least 8 vertices has complementary cycles of length ¢ and
[V(T)| —t for all 3 <t < |V(T)|/2. Recently, Volkmann [8] proved that each regular
multipartite tournament D of order [V (D)| > 8 is cycle complementary. In this article,
we analyze multipartite tournaments that are weakly cycle complementary. Especially, we
will characterize all 3-connected c-partite tournaments with ¢ > 3 that are weakly cycle
complementary.

1. Terminology

In this paper all digraphs are finite without loops and multiple arcs. The vertex
set and the arc set of a digraph D are denoted by V(D) and E(D), respectively. If
zy is an arc of a digraph D, then we write x — y and say = dominates y, and if
X and Y are two disjoint vertex sets or subdigraphs of D such that every vertex
of X dominates every vertex of Y, then we say that X dominates Y, denoted by
X — Y. Furthermore, X ~ Y denotes the fact that there is no arc leading from Y
to X.

If D is a digraph, then the out-neighborhood N} (z) = N*(z) of a vertex = is
the set of vertices dominated by = and the in-neighborhood N (x) = N~ () is the
set of vertices dominating x. Therefore, if the arc zy € E(D) exists, then y is an
outer neighbor of x and x is an inner neighbor of y. The numbers df(z) = d* (z) =
INT(z)| and dp(z) = d~(z) = |[N~(z)] are called the outdegree and the indegree of
z, respectively. Furthermore, the numbers 67, = 6+ = min{d* (z)|z € V(D)} and

5 =0 =min{d (z)|z € V(D)} are the minimum outdegree and the minimum
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indegree, respectively.

For a vertex set X of D, we define D[X] as the subdigraph induced by X. If
we replace in a digraph D every arc xy by yz, then we call the resulting digraph
the converse of D, denoted by D!,

If we speak of a cycle, then we mean a directed cycle, and a cycle of length n
is called an n-cycle. The length of a cycle C' is denoted by L(C). A digraph D is
called pancyclic if it contains cycles of length n for all n € {3,4,...,|V(D)|}. If
x € V(C) (z € V(P), respectively) for a cycle C' (a path P), then we denote the
successor of x in the given cycle (path) by z and the predecessor by z—. A digraph
D is cycle complementary if there exist two vertex-disjoint cycles C' and C’ such
that V(D) =V (C)uV(C").

A digraph D is strongly connected or strong if for each pair of vertices u and
v, there is a path from u to v in D. A digraph D with at least k + 1 vertices is
k-connected if for any set A of at most k — 1 vertices, the subdigraph D — A is
strong. The connectivity, denoted by (D), is then defined to be the largest value
of k such that D is k-connected. If (D) = 1 and « is a vertex of D such that D —z
is not strong, then we say that z is a cut-vertexr of D.

A digraph D is called c-partite, if its underlying graph G is c-partite. Espe-
cially, a c-partite or multipartite tournament is an orientation of a complete c-
partite graph. A tournament is a c-partite tournament with exactly c¢ vertices. If
Vi, Va,--- V. are the partite sets of a c-partite tournament D and the vertex x
of D belongs to the partite set V;, then we define V(x) = V;. If D is a c-partite
tournament with the partite sets V4, Va,..., V. such that [Vi| < |[Vo| < -+ < |V,
then |V.| = a(D) is the independence number of D.

2. Introduction and preliminary results

There is an extensive literature about the existence of complementary cycles
in digraphs. In 1985, Reid investigated 2-connected tournaments. In this class of
digraphs he found an example of a 3-connected regular tournament with seven ver-
tices, which is not cycle complementary.

Example 2.1(Reid [4]). Let T7 be the 3-regular and 3-connected tournament pre-
sented in Figure 1. Then it is well-known that T7 doesn’t contain a 3-cycle C5 and
a 4-cycle Cy such that V(T7) = V(C5) U V(Cy).

The tournament 7% is the sole exception of a 2-connected tournament with at
least 6 vertices that is not cycle complementary.

Theorem 2.2(Reid [4]). Let T be a 2-connected tournament with at least n > 6
vertices. Then either T contains a 3-cycle and an (n — 3)-cycle which are vertex
disjoint or T is the T-tournament T7.

In 1993, Song [5] extended this result.

Theorem 2.3(Song [5]). If T is a 2-connected tournament with at least eight
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vertices, then T contains two complementary cycles of length t and |V (T)| —t for
all 3 <t <|V(T)|/2.

Figure 1: The 3-regular, 3-connected tournament 77

The problem of complementary cycles in multipartite tournaments is much more
difficult to analyze than in tournaments. This is why up to now only regular mul-
tipartite tournaments were considered. Even not all digraphs of this class are cycle
complementary as the following example demonstrates.

Example 2.4(Volkmann [8]). Let Vi = {x1, 22}, Vo = {y1,y2} and V3 = {u1,us}
be the partite sets of the 2-connected 3-partite tournament D3 o presented in Figure
2. Then it is a simple matter to verify that D3 > doesn’t contain two vertex disjoint
cycles.

X1 X2

U1 U

Figure 2: The 2-connected 3-partite tournament Ds o

In 2004, Volkmann [8] proved the following result for regular multipartite tour-
naments.

Theorem 2.5(Volkmann [8]). Let D be a regular c-partite tournament. If ¢ = 2



290 Lutz Volkmann and Stefan Winzen

and |V(D)| > 8 or ¢ > 3 and |V(D)| > 6, then D is cycle complementary, unless
D is isomorphic to Ty in Figure 1 or to D3 o in Figure 2.

This theorem could make believe that the following conjecture of Yeo [11] is
valid.

Conjucture 2.6(Yeo [11]). A regular c-partite tournament D with ¢ > 4 has a pair
of vertex disjoint cycles of length ¢ and |V(D)| —t for all t € {3,4,--- ,|V(D)|—3}.

In [10], Volkmann showed that this conjecture is valid for ¢ = 3 with exception
of three special digraphs. Moreover, in this article and in [9] he treated the case
that t = 4 in Conjecture 2.6. And in a recent article Korneffel, Meierling, Volkmann
and Winzen [3] have shown that Conjecture 2.6 is true for ¢ = 5.

There is still another unsolved conjecture by Volkmann [7] concerning comple-
mentary cycles.

Conjucture 2.7(Volkmann [7]). A multipartite tournament D with x(D) >
a(D) + 1 is cycle complementary, unless D is a member of a finite family of multi-
partite tournaments.

The aim of this article is to weaken the condition that D is cycle complementary
in the following way.

Definition 2.8. Let D be a c-partite digraph with the partite sets Vi, Vo, -+ | VL.
Two vertex disjoint cycles C and C” are called weakly complementary, if they contain
vertices of all partite sets of D, which means that (V(C)UV(C"))NV; # 0 for all
1<i<cand V(C)NV(C') = 0. A c-partite digraph D with such two cycles is
weakly cycle complementary.

Note that a tournament is weakly cycle complementary, if and only if it is cycle
complementary. This definition leads to a new problem.

Problem 2.9. Find necessary and/or sufficient conditions for a c-partite digraph
to be weakly cycle complementary.

Using the weaker Definition 2.8 of cycle complementarity it is possible to charac-
terize k-connected multipartite tournaments which are weakly cycle complementary.
Especially, in this article we will prove that a 3-strong c-partite tournament D with
c > 3 and at least six vertices is weakly cycle complementary unless D is isomor-
phic to T7 in Figure 1. The following results play an important role to prove this
characterization.

Theorem 2.10(Bondy [1]). Fach strong c-partite tournament contains an m-cycle
for each m € {3,4,--- ,c}.

Theorem 2.11(Goddard, Oellermann [2]). Let D be a strongly connected mul-
tipartite tournament with the partite sets Vi, Vo, --- V.. Then every vertexr of

D belongs to a cycle that contains vertices from exactly m partite sets for each
m € {3,4,--- ,c}.
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Corollary 2.12. Every vertex of a strongly connected c-partite tournament D with
c > 2 belongs to a cycle that contains vertices from all ¢ partite sets.

In the following we call a cycle containing the vertex xy and vertices from all
partite sets of a multipartite tournament a GodOel-cycle C(xy).

Theorem 2.13(Tewes, Volkmann [6]). If D is a non-strong c-partite tournament
with the partite sets Vi, Va, -+, V., then there exists a unique decomposition of V(D)
into pairwise disjoint subsets D1, D, -, D,, where D; is the vertex set of a strong
component of D or D; C V| for some l € {1,2,---,c} such that D; ~ D; for
1 <i<j<pand there are x; € D; and x;41 € D;y1 such that x; — xz;y1 for
1<i<p.

3. Main result

Theorem 3.1. Let D be a c-partite tournament with ¢ > 3, |V(D)| > 6 and
k(D) > 3. Then D is weakly cycle complementary unless D is isomorphic to Tr in
Figure 1.

Proof. Let D be a c-partite tournament with ¢ > 3, |V(D)| > 6 and (D) > 3.
According to Theorem 2.10, D contains a 3-cycle C' = vivuzvy. Let D — V(C)
consist of the partite sets Vi, Va, -+, V.

First, let k(D) > 4. In this case D — V(C) is strong and thus it contains a
GodOel-cycle C’. Since C' and C’ are two vertex disjoint cycles in D with vertices
from all partite sets, we conclude that D is weakly cycle complementary.

Second, we may assume that x(D) = 3. If D — V(C) is strong, then as above
we see that D is weakly cycle complementary. Hence let D — {v1,v2,v3} be non-
strong. Theorem 2.13 implies that there is a unique decomposition of V(D) -V (C)
in subsets Dy, Dy, -, Dp, where D; is the vertex set of a strong component of
D—-V(C)or D; CV;forsomel € {1,2,--- ,¢'} such that D; ~ D, for1 <i<j<p
and there are x; € D; and x;41 € D; 1 such that x; — z;41 for 1 <i < p. Suppose
that D is not weakly cycle complementary.

If Dy is an independent set of vertices and there are vertices v; € D; and
v; € V(C) such that v] ~ v; (without loss of generality, let ¢ = 1), then the fact
that dBi{%vS}(v'l) = 0 yields that D — {v9,v3} is not strong, a contradiction to
k(D) = 3. Hence it remains to treat the case that V(C) — Dy, if D; C V; for
some 1 < j <. Analogously, we see that D, — V(C), if D,, is an independent set
of vertices. If Dy is the vertex set of a strong component with |Dy| > 3, then the
fact that k(D) > 3 implies that there are three pairwise non-incident arcs leading
from V(C) to D;. Analogously, if D, is the vertex set of a strong component with
|D,| > 3, then there are three pairwise non-incident arcs leading from D,, to V(C').

To prove this theorem we distinguish different cases.

Case 1. Assume that there are at least two vertex sets in Di, Dy, .-+, D, that
induce a non-trivial strong component.
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Subcase 1.1. Assume that at least one of these vertex sets is D; with 1 < i < p. Let
1 € N (v1) N Dy and y; € N~ (v2) N D,,. Let us define C; = C(zy) if D[D4] is a
non-trivial strong component and C; = 1 otherwise. Analogously, let C}, = C(y1)
if D[D,] is a non-trivial strong component and C, = y; otherwise. Similarly, we
define C; (2 < j < p—1) as an arbitrary GodOel-cycle of D[D;], if D; induces a
non-trivial strong component and C; = v;- with v;- € D; otherwise. Now it is obvious
that Cz and (U10102 cee Cifch»l T vagvg,’l)l or ’1}10102 R CZ',QCZ'+1 s va2v3v1
or v1C1Cy - - C;_1Ciya - - - Cpugugvy) are two weakly complementary cycles of D, if
we interpret the second cycle in the following way:

If D, is the vertex set of a non-trivial strong component, then we walk from vy
to 1 and along the cycle C; until we reach the vertex x; and then we walk to a
vertex of Co. If however Dy is an independent set of vertices such that vy € V(x])
for all v}, € D, then we walk along the cycle Cy until 27 ~. In the case that Dy is
an independent set of vertices we walk from vy to x1 and then to a vertex of Ds.

If we arrive at the vertex v;- of a GodOel-cycle C;, then we walk along the
cycle until we reach the vertex v;f and then we pass over to a vertex of the next
component. In the case that the next component is an independent set of vertices
that belong to the same partite set as v;_ then we stop at the vertex v;" and pass
over to the next component.

Finally, if D, induces a non-trivial strong component, then we pay attention
that we reach the cycle C), in the vertex yf, then we walk the cycle along until y;
and pass over to v, vs and we finish the cycle with v;.

These two cycles lead to a contradiction to our assumption that D is not weakly
cycle complementary.

Subcase 1.2. Assume that only the two vertex sets Dy and D, induce a non-trivial
strong component. Let vy — x5, vo — x; and vs — x,,, be the three pairwise
non-incident arcs leading from V(C) to D;. Analogously, let ys — v1, y¢r — v2
and y,, — vs be three pairwise non-incident arcs from D, to V(C). Let v} € D;
(2 <i<p-—1). If one of the vertices x4, x; or z,, does not belong to any GodOel-
cycle Cy of Dy, say x5 ¢ Cy, then C; and (vixsv5v}- ~v;,_1yt+yt++ “ e YUoU3 V]
or V1T VUG - - - v;)_ly;'Jr -+~ yvou3vy) are two weakly complementary cycles, a con-
tradiction. Hence we have {xg,x¢, 2} C V(C1). Analogously, we observe that
{Yss Y, ym } C V(Cp) for a GodOel-cycle C), of D[D,].

Subcase 1.2.1. Assume that p = 2.

Subcase 1.2.1.1. Assume that x; is on the oriented path along C; from x,, to
zs and that y,, is on the path along C5 from ys to y;. Then we have one

of the cycles vizsxl - oy y i T ymusvy and vizat - x; Tyt y T ymvsr.
Let this cycle be called Cj. If we are not in the case that = = x,, yf =
and V(z;) = V(y;), then there are the cycles vomsxy -+ -z yltyt® -y or

vozpx) -y Tyt ytt - yvg or voma) - xTyhT -y and Cf, which contain

vertices from all partite sets of D, a contradiction.
Hence, let )} = =z, v, = y; and V(2;) = V(y:). Now we have one of
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the cycles vlvgxtxj . x;yty;r - -ysv1 and Ulvgxtm;r . x;_ytyj -+ ysv1. Let this
cycle be called Cf. If we are not in the case that z;, = =z, y,, = ys and
V(2m) = V(ym), then D contains one of the cycles v3z,,x;} - -z yFyI+ - ymvs,
V3T wy YTyl T ymvs and vsz )t - yS T -+ ymvs. This cycle and CY
are weakly complementary cycles, a contradiction.

Hence, let =} = x4, y,, = ys and V(z,,) = V(ym). Now we have the cy-
cle CY" = vou3m,z4v9. If we are not in the case that z7 = x,,, ¥ = ys and
V(zs) = V(ys), then D contains one of the cycles viz af -z, vty ™ ygvr,
nrsrd -y Ty yt Ty and vizgr oany T ysvr. This cycle and O
are weakly complementary cycles a contradiction.

Hence, let 2} = z,,, y;7 = ys and V(zs) = V(ys). But this implies that
[V(Cy)| = |[V(Cq)| = 3 and Oy and Cs consist of vertices from the same partite
sets. Consequently we arrive at the weakly complementary cycles C; and C, also a
contradiction.

Subcase 1.2.1.2. Assume that z; is on the path along C; from z; to z,, and
that y,, is on the path along C5 from ys; to y;. Then there is one of the cy-
cles voyxy -z ytytt - yvg and vempx) -2y Tyt Yyt - yve, say this cycle
is C7. Furthermore, there is one of the cycles vzvizsad -~ 2y y yi + - - ymovs and
vsv1zexd - x; Yyl - ymus. This cycle and CY are weakly complementary cycles,

a contradiction.

Subcase 1.2.1.3. Assume that z; is on the path along C; from x4 to z,, and
that y,, is on the path along Cs from y; to ys. Then there is one of the cycles
vozpry - xsytytt o yvg and vemgx - xTytt - yve. Say this cycle is Cf. If
we are not in the case that 27 = x4, ;" = Yy and V(z,) = V(y,), then D has one
of the cycles 773”1xsx;r T It_y:_yj_+ T Ym U3, U3lesxj T zt__yj_y:_+  Ymuz and
vsvizexd - ;Y - ymus. This cycle and C) are weakly complementary cycles
of D, a contradiction.

Hence, let ¥ = 24, y;7 = ym and V(z,) = V(yn). Now we have one of
the cycles vizsxd -+ 2, Ymyt - ysv1 and vizezd - 2, T Ymyt - ysvr. Let this
cycle be called C}. If we are not in the case that z, = z,, y& = y and
V(xm) = V(y:), then there is one of the cycles vavzzy,xt - - x5 yFydt - ypvg,
VoU3T T - wy YTyl T g9 and vovgmpat - xsyS T - yo. This cycle and
C1 are weakly complementary cycles, a contradiction.

Hence, let 2}, = x5, y& = y and V(z,,) = V(y). Then D contains the cy-

cle CY" = v3z,ymvs. If we are not in the case that x = z,,, vy, = ys and
V(z¢) = V(ys), then there is one of the cycles vivaxszy -z, ytytt - ysvy,
—

VIVT T, - T, vysvp and vivemsxy - x Yyt - ysvr. This cycle and
C1" are weakly cycle complementary.

Hence, let ;7 = =, vy, = ys and V(z;) = V(y,). This is possible only if
[V(Cy)|] = |V(C2)| = 3 and both cycles contain vertices from the same partite
sets. Consequently, we deduce that C' and C; are weakly complementary cycles, a
contradiction.
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Subcase 1.2.1.4. Assume that z; is on the path along C; from =z, to =z
and that y,, is on the path along C3 from y; to ys. Then D contains
vvaTy Yty ygvy or vivemgx -z Ty ytt ooy, say this cycle
is C. Furthermore, there is one of the cycles vsx,z) -z yFyl™ - y,vs and
V3T -y yd T ymwvs. This cycle and Cf are weakly complementary cycles, a

contradiction.

Subcase 1.2.2. Assume that p > 3. If all partite sets appearing in DoUDsU---UD,_;
also appear in Dq or D, or V(C), then we find the same weakly complementary
cycles as in Subcase 1.2.1. If there are vertices of new partite sets in Dy U D3 U
-+ U Dp_1, then it is easy to see that these vertices can be inserted into the cycles
of Subcase 1.2.1.

Case 2. Assume that there is exactly one vertex set D; (1 < ¢ < p), which induces
a non-trivial strong component of D — V(C).

Subcase 2.1. Assume that 1 < ¢ < p. Let C; be an arbitrary GodOel-cycle

of D; and let v; € Dj; for all j € {1,2,---,p} \ {i}. If p > 4 or V(v]) #

V(v,), then D contains one of the cycles wvjvy---v; Vi, 1V} o V,V1V203V],
i / ’ / / / o, / / / / ’ .
VUG * VgV Vg *  * UpU1020U30] and vivg UiV oV g U, U1 V20307 This
cycle and C; are weakly complementary cycles, a contradiction. Hence, let p = 3

Y /
and V(v)) = V(v5).
Suppose that |Di|,|D3| > 2 with {v],v{} € D; and {v},v§} C Ds. Let

z; € V(C;) be arbitrary such that x; ¢ V(v]). Then D contains the cycle

o ifixivévlvlr Furthernioriichere is one of the cycles zjri;:cj:rj"”' -z VY U0y
1" — 1" 11 —— 1 1 —— 1 :
vix T - x vvgusvy, via xl T --xp T vgvavavy and vy a T - - - 27 T wgvguzvy. This

cycle and C7 are weakly complementary in D, a contradiction.

It follows that |[Di| =1 or |Ds| = 1. Without loss of generality, let D3 = {v}}.
Suppose that |D1| > 2 and {v],v{} C D;. Because of k(D) > 3 we conclude that
there are vertices x; € D2 and vy, € V(C) such that Tj — U, say x; — vi. Let
Cy = Cy(z;). If »; ¢ V(v}), then there is the cycle Cf = viz,jv1v]. Further-

more D contains one of the cycles v’l’x;'xj'Jr “e T U3V2U3YY v’l’xj"" ST U3V2V3VY
"oyt —— " "+t - 7 t /
vz a] T wy Tvguguzny and viw T --- @y vgvovgvy.  This cycle and Cf are

weakly complementary cycles, a contradiction. If z; € V(v]), then D contains
the weakly complementary cycles C and C5, also a contradiction.

Hence, it remains to treat the case that Dy = {v{} and D3 = {v4}. Let C3 be
a GodOel-cycle of D[Ds]. If there is a vertex v}, € Dy such that v] € V(v}), then
C and Cy are two weakly complementary cycles a contradiction. Consequently, let
vy ¢ V(vh) for all v € Ds. Suppose that there is a vertex v € Dy — V(Cy).
Then D contains the weakly complementary cycles Cy and viv]vhvivavszvy, also a
contradiction. Hence, let Dy = V(Cy). Since k(D) = 3 there are vertices z; € Do
and v, € V(C) such that x; — v,,. If there is a vertex z, € Dy with z, # z;
and x, # x;r such that v}, — x,, or v, — x,, then D contains the weakly comple-

+oizau vt Petatt o xmolus ! +og
mentary cycles z,x, - 20,2, and vix] T} T, V3V, U] O TpXy + T jUm Ty
P oo bt = o + ,
and vz T T, V3U,, v, 01, in both cases a contradiction. If v, — x;, then we
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find the two weakly complementary cycles x;v,,v;;z; and v'lxjx;rJr ez viv o vl

also a contradiction. Altogether, we see that (Dg — {x;r}) ~ {vm, v} }. Since every

+

vertex of V(C) has an outer neighbor in Dy we conclude that {v,,, v} — 2.

Moreover, we obviously have z; — v} or z; — vl and z; € V(v}},).
First, let z; — v},. Analogously as above and noticing that vt = v, we
deduce that in this case (D — {} }) ~ v;, — 2, and thus
{Vm, v 0} — x;L — ijr ~ {vm, vt v T
Now D — {v1, .13;'_} is not strong, a contradiction to x(D) = 3.
Second, let z; — v and z; € V(v}}). Analogously as above and noticing that
vt = vy, we conclude that (Dy—{z;}) ~ v,, — x;, and thus D contains the weakly

complementary cycles w;v*‘x*m** -~z and viz;v5v,, Uy, a contradiction.

mj v J
Subcase 2.2. Assume that ¢ = 1. If there is an arc leading from V(C) to Do,
say vz — vj, then there are the weakly complementary cycles vivauzvgvs - - - v,v1
and the GodOel-cycle of Dy, a contradiction. Hence, let Dy ~ V(C). If there
are vertices v, € V(C) and v{ € D; such that v,, — v} and v{ is not contained
in a GodOel-cycle Cy of D[D], then Cy and v, v} v} - - - v 0,5 v, v are two weakly
complementary cycles of D, also a contradiction. Consequently, let all vertices
v} € D that are outer neighbors of a vertex of V(C) be on every GodOel-cycle of
D[Dy).

Subcase 2.2.1. Assume that p > 3. Furthermore, let ¢/ = z125-- 2721 be a
GodOel-cycle of D[D;]. Since k(D) = 3 there are three pairwise non-incident arcs
leading from V(C) to Dy, say v; — s, va — 2z and vg — Zy,.

Subcase 2.2.1.1. Assume that z,, is on the path along C’ from z, to x;. If vs ¢ V(vh),
then there is one of the cycles vizsx? -+ z; vhuzvy and vizgx? -+ x; “vhuzvy,
and if v3 € V(v}), then D contains one of the cycles vz szt - -y vhv; and
vizsry ---x; vhvr. Inany case, let this cycle be called C”. If x ¢ V(vy,) orif z; €
V(vy,) and p > 4, then C" and Y R VAV “ U, Vg OF Vol - ax VY U, V2
are two weakly complementary cycles, a contradiction. If p = 3, z; € V(v}) and
ry # x4, then C” and vexyx) --- 27 “vivy are weakly complementary cycles of
D, also a contradiction. Consequently, let p = 3, z; € V(v}) and xz; = x. If
vy € V(vh), then C and C” are two weakly complementary cycles of D, a contra-
diction. Hence, let vo ¢ V(v5). But now we arrive at the weakly complementary

cycles vizsxd -+ x; vhugvy and vexvhve, a contradiction.
s t Y33 2V2,

Subcase 2.2.1.2. Assume that x, is on the path along C’ from x; to x,.

First, let vy € V(vg). Then D contains one of the cycles vzz,zt -« x; vhvs
and v3z,xt - x; “vhvs. Let this cycle be called C”. If p > 4 or if p = 3 and
xy & V(v), then C" and vowyx - - - w050} - - Vyv1v2 OF Vo -+ T V) - - - VU1V
are two weakly complementary cycles, a contradiction. In the remaining case that
p =3 and z, € V(v}) the GodOel-cycle in D[D;] and the cycle C' are two weakly
complementary cycles of D, also a contradiction.
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Second, let vh ¢ V(ve). Then D contains one of the cycles voxyz; -+ - 25 vhvo
and vox ;- - 27 "vhva. Let this cycle be called C. If z; ¢ V(vy,) orif z; € V(vy,)
and p > 4, then C and vzt -z, v} - VLU3VL OF VITTF -y V) -+ - VU3V
are two weakly complementary cycles, a contradiction. If p = 3, z; € V(v}) and
x; # x5, then C and vixsrl -+ wy vhvzvy are weakly complementary cycles, also
a contradiction. Hence, let p = 3, z; € V(v5) and z; = z,. If vg € V(v5) or
x5 € V(v}), then C and C" are two weakly complementary cycles, a contradiction.
Otherwise if v3,xs ¢ V(v}), then vozyw) -+ x5 vhve and viz vhvgv; are weakly
complementary cycles, again a contradiction.

Subcase 2.2.2. Assume that p = 2. If there are vertices v, € Dy and v] € D,
such that v € V(v]), then C and the GodOel-cycle of D[D;] are weakly comple-
mentary cycles, a contradiction. Consequently, we have Dy — Dy — V(C). Let
C' = x5 - - xyz1 be the GodOel-cycle of D[D;]. If there are vertices v; € V(C)
and v] € (D; — V(C")) such that v; — v}, then ¢’ and v;vjvhv; v, v; are weakly
complementary cycles, a contradiction. Consequently, let (D; — V(C")) ~ V(C).
Because of k(D) = 3 we observe that there are three pairwise non-incident
arcs leading from V(C) to V(C'), say v1 — x5, v2 — x4 and vz — x,. If
|Dy| > 2 with {v5,v5} C Dy, then D contains the weakly complementary cycles
vzswd - x; vhugvy and vexsx; - - 7 vYvg, a contradiction. Hence, let |Dy| = 1.

Suppose that there are vertices v;,z; and x with i € {1,2,3}, j € {1,2,--- ,1}
and s € {1,2,---,1} \ {j — 2,7 — 1,4} such that v, — z; and z;_1 —
Zs. Then D contains the weakly complementary cycles z;_12,2541---2;-1 and
Vil Tjqp1 - xs_lvévai_vi, a contradiction. This leads to

Claim 1. If [ > 4 and z; € V(C") is the outer neighbor of a vertex of V(C), then
it follows that 4~ x;_4 for all s € {1,2,--- i} \ {j — 2,5 — 1,5}

Claim 1 immediately implies the following claim.

Claim 2. If [ > 4 and there are vertices v;,v,, € V(C) and zj,z, € V(C')
with j ¢ {p + 1,p,p — 1} such that v; — z; and v,, — x,, then it follows that
Vi(zj1) = V(zp-1)-

Let {zs,z¢,zu} = {®p,, Tp,, Tp, }- If we pass the vertices of V(C’) along its
orientation, then, without loss of generality, let this three vertices be appear in
the order x,,, xp,, Tp, such that p1 — ps > max{ps — p2,p2 — p1} (all indices taken
modulo ). Furthermore, let {v;,v;,vm} = {v1,v2,v3} such that v; — zp,, v; — z,
and vy, — xp,. If p1 > p3 + 3 (modulo 1), then Claim 2 implies that V(xp,—1) =
V(zp,—1) and with Claim 1 we conclude that x,,_2 — xp,_1. Now we observe
that D contains the weakly complementary cycles Tp, —2%p, —1Zp; Tpg+1 - - Tp,—2 and
Vilp, Tpy4+1° " ° xps_gvév;rvi_vi, a contradiction. Hence, let p; < ps + 2 (modulo 1).
This immediately yields that [ < 6.

Subcase 2.2.2.1. Assume that [ = 6. In this case p; < p3+2 (modulo ) implies that,
without loss of generality, p; = 1, po = 3 and p3 = 5. Applying Claim 2, we see
that V(z2) = V(z4) = V(x6). Furthermore, with Claim 1 it follows that x; — x4.
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Now it is obvious that D contains the weakly complementary cycles x1x4z5x621
. [T Tt T ot
and v;x3v5v; v; v;, a contradiction.

Subcase 2.2.2.2. Assume that | = 5. Then the fact that p; < ps + 2 (modulo 1)
implies that, without loss of generality, p; =1, po =3 and ps =4 orp; =1, ps =2
and p3 = 4. If p; =1, p; = 3 and p3 = 4, then Claim 2 implies that V(z3) = V(z5)
and V(x2) = V(x5), a contradiction. And if p; = 1, po = 2 and p3 = 4, then Claim
2 yields V(xz3) = V(z1) and V(x3) = V(x5), also a contradiction.

Subcase 2.2.2.8. Assume that [ = 4. Without loss of generality, we may suppose
that p1 = 1, po = 2 and ps = 3. Claim 2 yields V(z3) = V(x4) and with Claim 1
we conclude that 3 — x1 or x5 € V(x1).

First, let x3 — 1. Then we conclude that 24 ~ V(C) since otherwise if there is
a vertex v; € V(C) such that v; — x4, then D contains the weakly complementary
cycles vmwévﬁv;vl and xjzox3x1, a contradiction. Let v, € V(C) such that
Um — x2. Then D contains the cycle C" := v, 2003240,,. If v, — x1, then C”
and v,z v v, are weakly complementary cycles, a contradiction. Hence, let
1 ~ v, and thus v,, — x3 and U:',_l — z1. If x4 — v, then z4v,, 2324 and
ViU 21040, contain all partite sets of D, a contradiction. Consequently, we have
V(z4) = V(v,,). But now D contains the weakly complementary cycles C” and
v rvhot | a contradiction.

Second, let x3 € V(z1). Suppose that there is a vertex v] € (D — V(C")).
Then v} is on a GodOel-cycle C of D[D;]. If [V(C)| > 6, then with Subcase 2.2.2.1
we arrive at a contradiction. Hence, let |V (C)| = 4. Since (D; — V(C)) ~ V(C)
and (D; — V(C")) ~ V(C), we conclude that v} € V(x4) and V(C) = (V(C") U
{vi}) \ {z4}. So in any case, if D; — V(C’) is empty or not, we observe that
dJJS_V(C) (x2) = dg_v(c)(m) = 2, and thus x5 as well as 24 has an outer neighbor
in V(C). Without loss of generality, let v; — .

Assume that vo — x3 and vs — x5. If x3 — vy, then the cycles z3viv923 and
v3Tovhv3 contain vertices from all partite sets of D, a contradiction. Hence, let
vy — x3. If x4 — v1, then D contains the weakly complementary cycles x4v123%4
and v9u3xovhve, also a contradiction. Consequently, we have vy ~ z4. If 24 — v3
and v1 ¢ V(z4), then zyvzvizy and vexsvive are weakly complementary cycles,
a contradiction. If v; € V(z4) and x1 — vy, then zjvazsxszy and vsxovhvs are
weakly complementary cycles, a contradiction. Hence let v9 — x7 in this case. If
x4 — vg and v1 € V(z4), then the cycles z4v3x02324 and vozvhve contain vertices
from all partite sets, also a contradiction. Hence, in all cases we observe that
vs — x4. Consequently, vy is an outer neighbor of x4. But now D contains the
weakly complementary cycles x4vav324 and vi21v5v1, a contradiction.

Assume that v — xo and v — x3. If 1 — v3, then D contains the weakly
complementary cycles xjvzvizy and vazavhvs, a contradiction. Hence, let vz — .
If x4 — v3, then z4v3x324 and vivexovhv; are weakly complementary cycles of D,
also a contradiction. Consequently, we deduce that v ~ x4. If x5 — v1, then D
contains the cycles vivaxovy and vz vhvz, a contradiction. Hence, let v1 ~ xo.
If v; € V(xg), then vy has to be an outer neighbor of x4 and x4 vexozsxy and
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v3T1v4v3 contain vertices from all partite sets of D, a contradiction. Hence, let
vy ¢ V(x2), and thus v; — xo. If 24 — vy, then zqvi202324 and vszivhvovs are
weakly complementary cycles of D, a contradiction. Consequently, let v; — x4
and vy is an outer neighbor of z4. This yields the weakly complementary cycles
24v9v3x3x4 and vixov4v1, a contradiction.

Subcase 2.2.2.4. Assume that [ = 3.

First, let there be a vertex v} € (D; — V(C”)). Then v} is on a GodOel-cycle C
of D[Dy]. If [V(C)| > 4, then the previous subcases yield a contradiction. Hence,
let [V(C)| = 3, and thus z; € (V(C") — V(C)) for an 1 < i < 3. If v; — x;, then
vjmivév;'vj_ v; and C are weakly complementary cycles, a contradiction.

Second, let D; = V(C’). In this case, D is a tournament of order seven and
Theorem 2.2 implies that D is cycle complementary and thus weakly cycle com-
plementary unless D is the tournament 77 of Example 2.1. The tournament 77 is

3-connected and not (weakly) cycle complementary.

Subcase 2.8. Assume that i = p. Observing the converse D~! of D Subcase 2.2
yields a contradiction.

Case 3. Assume that D; is a set of independent vertices for all 1 <1i < p. As seen
above, it follows that D, — V(C) — D;, and obviously we have D; — D;; for
all 1 <4 < p—1. In the following, if we speak of a vertex v}, then we mean that
U; e D;.

First, we assume that |D;| > 2 and |D,| > 2 such that {v{,vY} C D; and
{v,, vy} € Dy. If the vertices of Dy and D), belong to different partite sets, then D
contains the weakly complementary cycles vjv,viv; and vivgvy - - v, vyvav3vy,
a contradiction. Hence, we have to analyze the case that v € V(v,). The fact
that k(D) = 3 implies that |[Dy U D3 U ---Dy_q1| > 3. If p = 3, then vjvyviviv]
and v v§vivausv] are weakly complementary cycles, if p = 4, then vjvjvjviv]

and vyv3vjvavsvy are weakly complementary cycles, and if p > 5, then vjvyu,v1v]

and vv3v) - - - v, v, vaU3vY or vivjvg - - - v, v, vav3v; are weakly complementary
cycles, in all cases a contradiction. Hence, it follows that |Dq| = 1 or |D,| = 1.
Without loss of generality, let |D,| = 1. The fact that (D) = 3 yields that
|DaUDsU---UD,_4| > 2.

Second, we assume that |D;| > 2 such that {v],v{} C D;. The fact that
k(D) = 3 implies that there are vertices v, ; € D,y and v; € V(C), say j = 1,
such that 'U]/?_l — wv1. If the vertices of D; and D, belong to different partite
sets, then vjv,vzv] and vi'vyvy - - - vy, _;v1vev) contain vertices from all partite sets
of D, a contradiction. Hence, let v; € V(v,). If p > 4, then vjvyv,vzv; and
vivgvy v, q01v9vY or VYV) vy, jvivevy are weakly complementary cycles of
D and if p = 3, and thus |Ds| > 2, then vjvfvivavsv] and v{vhviv] are weakly
complementary cycles, in all cases a contradiction.

Consequently, it remains to treat the case that |D;| = |D,| = 1. Suppose that
p = 3. Since k(D) = 3, we conclude that a vertex v, € Dy has at least two outer
and two inner neighbors in V(C), a contradiction. Hence, let p > 4.
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Subcase 3.1. Assume that there are vertices v; € V(C'), vj, € Dy, and v € D; with
2 <1<k <p-1such that vj, — v; — v;. In this case let k and [ be chosen
such that k — [ is minimal. Obviously, D contains the cycle C" = vjv;_; - - - v} v;v;.
If V(v]_y) # V(}yy), then C" and vjvy - v]_ 0} 1V} 4o - - - Uy v; V] are weakly
complementary cycles, a contradiction. Hence let V(v;_;) = V(vj ). If 1 —=1#1,
then C" and vjvy - v]_yvp V) o vl’,vi‘"v;vi are weakly complementary cycles,
and if k + 1 # p, then C” and vjvh - v]_10} V%, 5+ - Vpv; v; v] contain vertices
from all partite sets of D, in both cases a contradiction. Consequently, it remains
to treat the case that [ =2, k =p —1 and V(v]) = V(v,).

If |D,,| > 2 with m € {2,p — 1} and v), € D, — {v],}, then C’ and
vivunvivv) are weakly complementary cycles, a contradiction. Hence let
Dy = {vy} and D, = {v,}. If p> 6 or p =25 and vy ¢ V(v;), then we arrive
at a contradiction to the minimality of k — . If p =5, v§ € V(v;) and v} ¢ V (v)),
then D contains the weakly complementary cycles vhvjv;vh and viviviviv; vy, a
contradiction. If p =5, v5 € V(v;) and v4 € V(v}), then the fact that D — {v}, v}
is strongly connected implies that there is an arc leading from v} to {v;",v; }. If
vy — v, then viviv v v} and viv;vhv} are weakly complementary cycles and if
v — v — vy, then vhviv; vivh and vjvjviv v contain vertices from all partite
sets of D, in both cases a contradiction. Finally, if p = 4, then we arrive at the
contradiction that D — {v},v4} is not strong.

Subcase 3.2. Assume that there are vertices v; € V(C), vj, € Dy, and v € D; with
2 <k <l < p—1such that v; — v; — Ul/. In this case let & and [ be chosen such that
[ —k is minimal. If v;" — v}, then vj,vv; v}, and vV{vh - v} _ V), V), o« - UVU; V] OF
VIV« U U yo  URU; v are two weakly complementary cycles of D, a contradic-
tion. Hence, let v, ~» v;". Analogously, if v] — v;, then we see that vjv; v;v, and
VYUY VU Vg v;)vjv’l OF VjVh - V]_oV] 1 V) o ~v]’gvj"ui are weakly com-
plementary cycles, also a contradiction. Consequently, let v;” ~» v]. Since | — k is
minimal we conclude that [ —k =1or ! —k =2 and v; € V(v}_,).

First let [ —k = 2 and v; € V(v ). fvp;, — v}, then D contains the
weakly complementary cycles vjvj--- v}, vf v; v] and vjv],, ---v,vv], a contra-
diction. Hence, let v;" — v}, ;. Analogously, we observe that vj,, — v;. If
v; € (V(vh)UV (vg)U---UV (v],_,)), then v] vy - - - vjvv] and v}, v} o« - 0h0 V)
contain vertices from all partite sets of D, a contradiction. Consequently, let
v; & (V(vy)UV(vz)U---UV(v,_1)), and thus v; — vj. If v; — v}, then Subcase
3.1 yields a contradiction. Hence let v;, — v; . But now D contains the weakly
complementary cycles vivy - - v v; vy and Vg Vg o U;vajﬁl, a contradiction.

Second let [ = k + 1. If v, ¢ V(v;) and thus, as seen above, v, — v,
then v{vh - - - vjv; vy vl and v, v} o VLV, contain vertices from all partite
sets of D, a contradiction. Analogously, if v;, ¢ V(v; ) and thus v; — v},
then v]v} - vjv;v] v} and v} v}, - U)V; v}, are weakly complementary cycles
of D, also a contradiction. Consequently, let v}, € V(v;") and v}, € V(v;). If
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v — v}y, then D contains the cycles vjvh - - vjv;v] and vj v} o Vy0F Vg,
a contradiction. If v — v;, then vjvy .- viv; v and vy v} o V,V;VL ., cOn-
tain vertices from all partite sets of D, also a contradiction. Hence let v}, — v}
and v; — vj. Now it follows that D contains the cycle C’' = v; vjv} v v; .
Ifhk#2ork#p—2ork=2=p—2and vy ¢ V(v,), then C' and one of
the cycles vjvy - v} V) o0} 3+ vpvv) and VUG U)oU) Uy g Uy Uv) and
VIV Uy Vh gV g U0V are weakly complementary cycles of D, a contra-
diction. Hence let k = 2, p = 4 and v} € V(v}). If |D,,| > 2 with m € {2,3},
then C’ and vjv!/ vjv;v] contain vertices from all partite sets of D, a contradiction.
Consequently we have |Dy| = |D3| = 1. Now it is obvious that D — {v}, v4} is not
strong, a contradiction to x(D) = 3.
p—1 p—1
Subcase 3.3. Assume that v,, ~ |J D; or |J D; ~ vy, for each m € {1,2,3}.
j=2 j=2

Since D — {v}} as well as D — {v,} are strong, we deduce that there are vertices
vi,v; € V(C) with i # j such that v; — v and v,,_; — v, and thus (D U D3 U
--UDp_1) ~v; and v; ~ (Do UD3U---D,_1). Let v,, € V(C) — {v;,v;}.

Suppose that v; — v;. Then D contains the cycle C" = vgvy -+ - v,_jvjvivy. If
vy ¢ V(v,), then D contains the weakly complementary cycles C" and vjv,v,v1, a
contradiction. Hence let v € V(v,). If |Dy| > 2 with [ € {2,p — 1}, then C' and
v v v, vy V) are weakly complementary cycles of D, also a contradiction. Conse-
quently, let [Do| = |Dy_1| = 1. If p > 5, then vjvyv,v,v] and v;vgv) - - - v,y v;v; or
VVyUg - - - vy, 10 0; contain vertices from all partite sets of D, a contradiction. And
if p=4, then D — {v},v4} is not strong, a contradiction to x(D) = 3.

Consequently, it remains to consider the case that v; — v; — v, — v, If
vj & V(vy) and v; ¢ V(v,_4), then D contains the weakly complementary cycles
V1U5V U, v) and vavy - - v vy Or vyvg - - - vvvy, a contradiction. If vy € V(vg)
and v; € V(v,_y), then it is straightforward to see that vjv, ;vv,v; and
VU -+ U, gV, VU, OF Vyvy -+ - U, 30, 0;v5 are two cycles that contain vertices from
all partite sets of D, also a contradiction. Hence let v; € V(vy) and v; — vj,_;.
If v — v, then D contains the weakly complementary cycles v;v4v,,v; and
VIURYY - - VU V) OF VUg - vyvivy, a contradiction. Consequently, let vy, — vg.
Now, we have two vertices vj, v, € V(C) such that v, — vy, v, ; — v; and
vj — Um. As above we arrive at a contradiction. Finally if vj — v; and
v; € V(v,_;), then observing the converse D~ of D, we also arrive at a con-

tradiction. This completes the proof of this theorem. O
A direct consequence of this theorem is the following result.

Corollary 3.2. FEvery 3-strong c-partite tournament with ¢ > 3 and at least 8
vertices is weakly cycle complementary.

The following example presents two 2-strong c-partite tournaments with ¢ > 3
and at least 6 vertices that even do not contain two vertex disjoint cycles, and thus
no weakly complementary cycles.
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Example 3.3. The 4-partite tournament D; and the 3-partite tournament Dy of
Figure 3 are 2-strong and do not have any two vertex disjoint cycles. Thus they do
not have two vertex disjoint cycles with vertices from all partite sets, which means
that D; and Ds are not weakly cycle complementary.

D,

Figure 3: The 2-strong multipartite tournaments D; and Dy without
a pair of vertex disjoint cycles.

Since the authors found some more 2-strong multipartite tournaments with this
property it may become difficult to characterize all 2-strong multipartite tourna-
ments that are weakly cycle complementary. Nevertheless it would be interesting
to solve this problem.

Problem 3.4. Characterize all 2-strong c-partite tournaments D with ¢ > 3 and
|[V(D)| > 6 that are weakly cycle complementary.
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