• Title/Summary/Keyword: Cut Pile

Search Result 53, Processing Time 0.028 seconds

Case study of Cut-slop failure caused by rock anisotropy (암석의 이방성에 기인한 절토사면 붕괴 사례연구)

  • Jung, Young-Kook;Chang, Buhm-Soo;Shin, Chang-Gun;Lee, Yeon-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.831-837
    • /
    • 2005
  • In this study, a computer program to predict the behavior of laterally loaded single pile and pile groups was developed by using a beam-column analysis in which the soils are modeled as nonlinear springs by a family of p-y curves for subgrade modulus. The special attention was given to the lateral displacement of a single pile and pile groups due to the soil condition and the cap rigidity. The analysis considering group effect was carried out for $2\;{\times}\;2\;and\;3\;{\times}\;3$ pile groups with the pile spacing 3.0B, 4.0B and 5.0B. Based on the results obtained, it is found that the overall distributions of deflection, slope, moment, and shear force in a single pile give a reasonable results irrespective of cap connectivity conditions. It is also found that even though there are some deviations in deflection prediction compared with the observed ones, the prediction by present analysis simulates much better the general trend observed by the centrifuge tests than the numerical solution predicted by PIGLET.

  • PDF

The Behavior of Stabilizing Piles installed in a Large-Scale Cut Slope (대규모 절개사면에 설치된 억지말뚝의 거동)

  • Song, Young-Suk;Hong, Won-Pyo
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.191-203
    • /
    • 2009
  • The effect of stabilizing piles on cut slopes is checked and the behavior of slope soil and piles are observed throughout the year by field measurements on the large-scale cut slopes. First of all, the behavior of the slope soil was measured by inclinometers during slope modification. Landslides occurred in this area due to the soil cutting for slope modification. The horizontal deformations of slope soil are gradually increased and rapidly decreased at depth of sliding surface. As the result of measuring deformation, the depth of sliding surface below the ground surface can be known. Based on the measuring the depth of the sliding surface, some earth retention system including stabilizing piles were designed and constructed in this slope. To check the stability of the reinforced slope using stabilizing piles, an instrumentation system was installed. As the result of instrumentation, the maximum deflection of piles is measured at the pile head. It is noted that the piles deform like deflection on a cantilever beam. The maximum bending stress of piles is measured at the soil layer. The pile above the soil layer is subjected to lateral earth pressure due to driving force of the slope, while pile below soil layer is subjected to subgrade reaction against pile deflection. The deflection of piles is increased during cutting slope in front of piles for the construction of soil nailing. As a result of research, the effect and applicability of stabilizing piles in large-scale cut slopes could be confirmed sufficiently.

Nonlinear Wave Forces on an Offshore Wind Turbine Foundation in Shallow Waters

  • Choi, Sung-Jin;Lee, Kwang-Ho;Hong, Keyyoung;Shin, Seong-Ho;Gudmestad, O.T.
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.2
    • /
    • pp.68-76
    • /
    • 2013
  • In this study, a 3D numerical model was used to predict nonlinear wave forces on a cylindrical pile installed in a shallow water region. The model was based on solving the viscous and incompressible Navier-Stokes equations for a two-phase flow (water and air) model and the volume of fluid method for treating the free surface of water. A new application was developed based on the cut-cell method to allow easy installation of complicated obstacles (e.g., bottom geometry and cylindrical pile) in a computational domain. Free-surface elevation, water particle velocities, and inline wave forces were calculated, and the results show good agreement with experimental data obtained by the Danish Hydraulic Institute. The simulation results revealed that the proposed model can, without the use of empirical formulas (i.e., Morison equation) and additional wave analysis models, reliably predict non-linear wave forces on an offshore wind turbine foundation installed in a shallow water region.

Evaluation on Field Applicability of Cast-In-Place Pile using Surfactant Grout (계면활성제계 그라우트를 활용한 흙막이 벽체공법(CIP)의 현장 적용성 평가)

  • Do, Jinung;Kim, Hakseung;Park, Bonggeun;Lee, Juhyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.75-83
    • /
    • 2016
  • In case of underground construction affected by groundwater, CIP (Cast-In-Place Pile) method is generally used to resolve the geo-hydraulic problem. However, as this method has poor connectivity between piles, an auxiliary method for cut-off is needed in many cases. In this study, a new concept earth retaining wall method (H-CIP) with no auxiliary method, by using surfactant grout (Hi-FA) which improves antiwashout and infiltration ability, is introduced, and its field applicability is evaluated. CIP and H-CIP piles were installed with same ground conditions, and field and laboratory tests were conducted to verify the performance. As results, newly contrived H-CIP method shows higher field performance for cut-off and strength than conventional CIP method.

Slip Failure Strength of Infilled Concrete with Reinforced PHC Pile by One-Cutting Method (원커팅 철근보강 PHC 말뚝의 속채움 콘크리트 부착파괴 성능)

  • Chun, Young-Soo;Sim, Young-Jong;Park, Jong-Bae
    • Land and Housing Review
    • /
    • v.2 no.4
    • /
    • pp.553-558
    • /
    • 2011
  • Existing method protruding strands that are embedded in PHC pile to connect pile head and foundation slab shows poor constructibility. As this causes crack and damage in pile head and casualties often occurs in construction site during the work, alternative method called one-cutting method, in which pile above the ground surface and strands embedded in pile are completely cut and pile head is reinforced with rebar for connection with foundation slab, is currently adopted. However, the capacity of details for these methods are not mechanically proved. In this study, in order to suggest proper details of reinforcement for one-cutting method, failures due to lack of shear resistance between infilled concrete and PHC pile are analyzed through experiments and embedded depth with infilled concrete inside PHC pile is suggested. Assuming that slip failure strength is 0.4MPa, which is obtained from experiment conservatively, to have rebar yielded before slip failure, minimum depth of infilled concrete for PHC 450 and PHC 500, need to be 600mm above, and for PHC 600, 1,000mm above.

The Use of Piles to Cut Slopes Design in Cohesive Soils (억지말뚝을 이용한 점성토지반 절토사면의 설계)

  • 홍원표;한중근;송영석
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.157-170
    • /
    • 1999
  • A new design technique is presented to stabilize cut slopes in cohesive soils by use of piles. The design method can consider systematically factors such as the gradient and height of slope, the number and position of pile's rows, the interval and stiffness of piles, etc. The design method is established on the basis of the stability analysis of slope with rows of piles. The basic concept applied in the stability analysis is that the soil across the open space between piles can be retained by the arching action of the soil, when a row of piles is installed in soil undergoing lateral movement such as landslides. To obtain the whole stability of slope containing piles, two kinds of analyses for the pile-stability and the slope- stability must be performed simultaneously. An instrumentation system has been installed at a cut slope in cohesive soil, which has been designed according to the presented design process. The behavior of both the piles and the soil across the open space between piles is observed precisely. The result of instrumentation shows that the cut slope has been stabilized by the contribution of stabilizing effect of piles on the slope stability in cohesive soil.

  • PDF

Structural Capacity of High Strength Steel Pipe Pile After Pile Driving (고강도 강관말뚝의 항타후 구조성능 분석)

  • La, SeungMin;Yoo, Hankyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6C
    • /
    • pp.251-258
    • /
    • 2011
  • Steel pipe piles have been used as various deep foundation materials for a long time. Recent increase in steel material cost has made engineers reluctant in using it even with its good quality and ease of construction. Therefore when constructing with steel pipe pile, the decision to reuse the excessive pile length that is cut off from the designed pile head elevation after pile driving can be cost saving. This has caused many constructors to reuse the pile leftovers with new piles, but the absence of quantitative structural capacity behaviors of steel pipe pile after pile driving or appropriate countermeasures and standards in reusing steel pipe pile has resulted in wrong applications, pile structural integrity problems, inappropriate limitation of reusable pile length, etc. The structural performance analysis between a new pile and a pile that has undergone working state and ultimate state stress level during pile driving was performed in this research by means of comparing the results between the dynamic pile load test, tensile load test, charpy energy test and fatigue test for high strength steel of $440N/mm^2$ yield strength. Test results show that under working load conditions the yield strength variation is less than 2% and for ultimate load conditions the variation is less than 5% for maximum total blow count of 3000. The results have been statistically analyzed to check the sensitivity of each factors involved. From the test results, reusability of steel pipe pile lies not in the main pipe yield strength deviation but in the reduction of absorb energy, strength changes and quality control at the welded section, shape deformation and local buckling during pile driving.

A study on the effect of the pile tip deformations on the pile behaviour to shield TBM tunnelling (Shield TBM 터널시공으로 유발된 말뚝선단의 변형이 말뚝거동에 미치는 영향에 대한 연구)

  • Young-Jin Jeon;Byung-Soo Park;Young-Nam Choi;Cheol-Ju Lee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.3
    • /
    • pp.169-189
    • /
    • 2024
  • In the current work, a series of three-dimensional finite element analyses have been carried out to understand the behaviour of pre-existing single piles and pile groups to adjacent Shield TBM tunnelling by considering various reinforcement conditions. The numerical modelling has analysed the effect of the pile cutting, ground reinforcement and pile cap reinforcement. The analyses concentrate on the ground settlements, the pile head settlements, the axial pile forces and the shear stress transfer mechanism at the pile-soil interface. In all cases of the pile tips supported by weathered rock, the distributions of shear stresses presented a similar trend. Also, when the pile tips were cut, tensile forces or compressive forces were induced on the piles depending on the relative positions of the piles. Furthermore, when the pile tips are supported by weathered rock, approximately 70% of the load is supported by surface friction, and only the remaining 30% is supported by the pile tip. Furthermore the final settlement of the piles without reinforcement showed approximately 70% more settlement than the piles for which ground reinforcement is considered. It has been found that the ground settlements and the pile settlements are heavily affected by the pile cutting and reinforcement conditions. The behaviour of the single pile and group piles, depending on the pile cutting, conditions of ground and pile cap reinforcement, has been extensively examined and analysed by considering the key features in great details.

Test results confirm the bridge foundation bearing capacity due to construction costs case (교량기초의 지지력확인 시험 결과에 따른 건설비 절감사례)

  • Lee, Soo-Gon;Woo, Jae-Gyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1065-1072
    • /
    • 2010
  • Case studies published in Korea versus the low ground fault is applied on the bridge based on theory or experience in the design of pile bearing capacity by the value of the expression is designed to conduct field tests Disclosure Load bearing capacity value, the result of applying a reasonable construction cost savings of approximately 10 eokyeowon Has, in the design of site investigation was insufficient to require additional efforts. Apply the appropriate value from the extra support in the design of accurate ground survey and air speed to cut the budget and social technology can ensure the reliability was unknown.

  • PDF

Appearance Characteristics of a Velvet Fabric and 3-Dimensional Modeling of Pile Fibers (벨벳직물(織物)의 외관특성(外觀特性)과 파일섬유(纖維)의 삼차원적(三次元的)모델링)

  • Kim, Jong-Jun;Jeon, Dong-Won;Lee, Jung-Min
    • Journal of Fashion Business
    • /
    • v.9 no.4
    • /
    • pp.170-177
    • /
    • 2005
  • Velvet fabric has soft touch, subtle luster, and good draping property. Threedimensional simulated models of cylindrical monofilaments constituting the velvet fabric were prepared. Image analysis techniques were used to measure the reflected light from the surface of velvet fabrics and the simulated images of the pile fibers. As the angle of incidence increased, the reflectance from the velvet surface became lower. Most of the reflection came from the tips of the cut piles. Crushed velvet type also was modeled using slant cylinder models on top of a base plate.