DOI QR코드

DOI QR Code

Evaluation on Field Applicability of Cast-In-Place Pile using Surfactant Grout

계면활성제계 그라우트를 활용한 흙막이 벽체공법(CIP)의 현장 적용성 평가

  • 도진웅 (노스캐롤라이나 주립대학교 토목공학과) ;
  • 김학승 (한국건설기술연구원 지반연구소) ;
  • 박봉근 ((주)백경지앤씨) ;
  • 이주형 (한국건설기술연구원 지반연구소)
  • Received : 2015.09.15
  • Accepted : 2016.01.08
  • Published : 2016.02.01

Abstract

In case of underground construction affected by groundwater, CIP (Cast-In-Place Pile) method is generally used to resolve the geo-hydraulic problem. However, as this method has poor connectivity between piles, an auxiliary method for cut-off is needed in many cases. In this study, a new concept earth retaining wall method (H-CIP) with no auxiliary method, by using surfactant grout (Hi-FA) which improves antiwashout and infiltration ability, is introduced, and its field applicability is evaluated. CIP and H-CIP piles were installed with same ground conditions, and field and laboratory tests were conducted to verify the performance. As results, newly contrived H-CIP method shows higher field performance for cut-off and strength than conventional CIP method.

지하수위의 영향을 받는 지반에 대하여 터파기를 실시할 경우 차수문제를 해결하기 위한 방법으로 현장타설말뚝 공법인 CIP (Cast-In-Place Pile) 공법이 보편적으로 사용되고 있다. 그러나 CIP 공법은 말뚝간 연결성이 좋지 않아 많은 경우 차수에 대한 별도의 처리를 필요로 한다. 본 연구에서는 수중불분리성과 침투성을 향상시켜주는 계면활성제(Hi-FA)를 활용한 그라우트를 사용하여 기존 CIP 공법 대비 보조차수 공법의 필요성을 최소화한 새로운 개념의 흙막이 공법(H-CIP)을 제시하고, 이 공법의 현장 적용성에 대하여 검토하였다. 현장 검증실험을 위하여 동일한 지반조건에 대하여 H-CIP 공법과 기존 CIP 공법으로 각각 차수벽을 시공하고, 성능검증을 위한 현장시험 및 실내시험을 수행하였다. 현장 실험결과 새로 제안된 H-CIP 공법은 기존 CIP 공법에 비하여 현장 차수능과 강도가 우수한 것으로 나타났다.

Keywords

References

  1. Choi, J. and Yoon, E. (2007). "Excellent-joint pile to improve waterproofing and continuous boring in cast in place pile method." Proceeding of 33rd Korea Society of Civil Engineering Conference, Seoul, pp. 850-853.
  2. Construction New Technology 402. Structural and rock cut-off method using Acrylic Resin Chemical (in Korean).
  3. Hong, W., Kang, C. and Yoon, J. (2012). "The behavior of earth retaining walls applied to top-down construction method using back analysis." Journal of Engineering Geology, Vol. 22, No. 1, pp. 39-48. https://doi.org/10.9720/kseg.2012.22.1.039
  4. Houlsby, A. C. (1976). "Routine interpretation of the Lugeon water-test." Quarterly Journal of Engineering Geology and Hydrogeology, Vol. 9, pp. 303-313. https://doi.org/10.1144/GSL.QJEG.1976.009.04.03
  5. Jang, S., Choi, J., Song, B., Choi, Y. and Yoon, J. (2012). "Advanced C.I.P method to use the steel-casing with inner joint." Journal of Korean Geo-environmental Society, Vol. 12, No. 2, pp. 95-102.
  6. JSCE-D104 (1990). Anti-washout properties under water: degree of separation in water as measured by the mass of suspended substances (in Japan).
  7. Katsumi, T., Kamon, M., Inui, T. and Araki, S. (2008). "Hydraulic barrier performance of SBM cut-off wall constructed by the trench cutting and re-mixing deep wall method." Proceeding of GeoCongress 2008, ASCE, pp. 628-635.
  8. KCI-AD102 (2009). Quality specification of antiwashout admixture for concrete (in Korean).
  9. Khayat, K. H. (1995). "Effects of antiwashout admixtures on fresh concrete properties." ACI Material Journal, Vol. 92, No. 2, pp. 164-171.
  10. Kim, I. H. (2008). "Technology development of forming continuous pile wall as new concept." Construction Journal, Vol. 87, pp. 60-61.
  11. Kong, J., Kim, C., Park, J. and Chun, B. (2010). "Grouting effects of microfine cement in the rock-based sites." Journal of Korean Geo-environmental Society, Vol. 11, No. 12, pp. 37-45.
  12. Korea Society of Civil Engineering (KSCE) (2004). Civil engineering works specification.
  13. KS F 2322 (2010). Standard test methods for permeability of saturated soils (in Korean).
  14. KS L 5105 (2007). Testing method for compressive strength of hydraulic cement mortars (in Korean).
  15. Lee, J. (2009). Ground behavior due to adjacent excavation, Master Dissertation, University of Seoul (in Korean).
  16. Moon, H. (1997). "Quality specification of antiwashout admixture for concrete." Magazine of Korea Society of Civil Engineering, Vol. 45, No. 1, pp. 71-77.
  17. Na, D., Kim, J., Kim, K. and Jeon, M. (2011). "Application example of eco-friend grouting in cofferdam on coast soft ground." Magazine of Korean Geo-environmental Society, Vol. 12, No. 3, pp. 23-29.
  18. National Emergency Management Agency (NEMA) (2013). Disaster Yearbook (2012) (in Korean).
  19. Oh, J. (1999). Design and Construction of Retaining Wall, Engineers (in Korean).
  20. Ou, C. Y., Hsieh, P. G. and Chiou, D. C. (1993). "Characteristics of ground surface settlement during excavation." Canadian Geotechnical Journal, Vol. 30, No. 5, pp. 758-767. https://doi.org/10.1139/t93-068
  21. Prezzi, M. and Basu, P. (2005) "Overview of construction and design of auger cast-in-place and drilled displacement piles." Proceeding of the 30th Annual Conference on Deep Foundations, Chicago.
  22. Quinones-Roza, C. (2010). "Lugeon test interpretation, revisited. In collaborative management of integrated watersheds." Proceeding of 30th US Society of Dams Annual Conference, pp. 405-414.
  23. Somasundaran, P. (2006), Encyclopedia of Surface and Colloid Science 2nd edition, Volume 4, Taylor & Francis, USA.
  24. Song, B. (2013). A study on the engineering characteristics and the field applicability analysis of a Hi-FA grout which is a kind of surfactants, Ph.D. Dissertation, Kyeongsung University (in Korean).