This paper proposes a selectively cumulative sum(S-CUSUM) control chart for detecting shifts in the process mean. The basic idea of the S-CUSUM chart is to accumulate previous samples selectively in order to increase the sensitivity. The S-CUSUM chart employs a threshold limit to determine whether to accumulate previous samples or not. Consecutive samples with control statistics out of the threshold limit are to be accumulated to calculate a standardized control statistic. If the control statistic falls within the threshold limit, only the next sample is to be used. During the whole sampling process, the S-CUSUM chart produces an 'out-of-control' signal either when any control statistic falls outside the control limit or when L -consecutive control statistics fall outside the threshold limit. The number L is a decision variable and is called a 'control length'. A Markov chain approach is employed to describe the S-CUSUM sampling process. Formulae for the steady state probabilities and the Average Run Length(ARL) during an in-control state are derived in closed forms. Some properties useful for designing statistical parameters are also derived and a statistical design procedure for the S-CUSUM chart is proposed. Comparative studies show that the proposed S-CUSUM chart is uniformly superior to the CUSUM chart or the Exponentially Weighted Moving Average(EWMA) chart with respect to the ARL performance.
Cusum control chart is an efficient method to detect the change of process status. Many variants of cusum have considered, and the effects of design parameters have reviewed. To find the best cusum out of variants and to decide the best values of the design parameters, we need a criterion measuring the performance of the cusum control chart. People used and suggested several criterions which appear to be similar, but those have quite different properties. In this paper we review the properties of performance measure of cusum and its variants. Our goal is to provide fair and impartial criterion for comparison of cusums when the decision boundaries of the cusums are much different each other. We comparatively tested newly suggested measure and traditional measure with the examples of cumulative scored chart as a special case of cusum chart.
This paper proposes a selectively cumulative sum (S-CUSUM) control chart with variable sampling intervals (VSI) for detecting shifts in the process mean. The basic idea of the VSI S-CUSUM chart is to adjust sampling intervals and to accumulate previous samples selectively in order to increase the sensitivity. The VSI S-CUSUM chart employs a threshold limit to determine whether to increase sampling rate as well as to accumulate previous samples or not. If a standardized control statistic falls outside the threshold limit, the next sample is taken with higher sampling rate and is accumulated to calculate the next control statistic. If the control statistic falls within the threshold limit, the next sample is taken with lower sampling rate and only the sample is used to get the control statistic. The VSI S-CUSUM chart produces an 'out-of-control' signal either when any control statistic falls outside the control limit or when L-consecutive control statistics fall outside the threshold limit. The number L is a decision variable and is called a 'control length'. A Markov chain model is employed to describe the VSI S-CUSUM sampling process. Some useful formulae related to the steady state average time-to signal (ATS) for an in-control state and out-of-control state are derived in closed forms. A statistical design procedure for the VSI S-CUSUM chart is proposed. Comparative studies show that the proposed VSI S-CUSUM chart is uniformly superior to the VSI CUSUM chart or to the Exponentially Weighted Moving Average (EWMA) chart with respect to the ATS performance.
본 연구에서는 반도체 플라즈마 장비 감시를 위한 CUSUM 제어 차트 설계기법에 관해 연구하였다. CUSUM 제어차트에 관여하는 설계변수의 다양한 조합에 대하여 플라즈마 장비의 감시 성능을 평가하였다. 평가를 위해 RF 정합망 감시시스템을 이용하여 플라즈마 임피던스 정합에 관여하는 정합변수에 대한 실시간 데이터를 수집하였으며, 여기에는 임피던스와 상위치에 대한 전기적 정보, 그리고 반사전력에 대한 정보가 포함된다. 평가결과, 설계변수의 조합에 대하여 감시 성능이 크게 달랐지만, 각 센서 정보의 감시 성능을 증진시키는 설계변수의 조합이 있었음을 확인하였으며, 이는 각 종 다양한 센서정보별 CUSUM 제어 차트의 설계가 필요함을 의미한다. 연구에서는 Raw 데이터 대비 성능 분석을 위해 CUSUM 제어 차트의 설계변수를 변수인 d와 ${\Theta}$값의 변화를 주어 다수의 (d, ${\Theta}$)의 조합에 따른 감시 성능을 평가하였으며, 평가에 이용된 데이터는 소스전력이 750 W, 압력이 15 mTorr, Ar 유량이 50 seem일 때 수집하였다.
Poisson 분포를 따르는 결점수를 관측하여 공정을 관리할 때 표본 크기를 동일하게 유지하기가 힘든 경우가 많다. 이 논문은 표본 크기가 동일하지 않은 경우 Poisson 공정모수의 변화를 탐지하는 GLR(generalized likelihood ratio) 관리도 절차를 제안하고 있다. 또한 제안된 GLR 관리도의 효율을 모의실험을 통하여 기존에 연구된 CUSUM 관리도들과 비교하였다. 모의실험 결과, 제안된 GLR 관리도는 공정모수의 다양한 변화에 대해 효율이 대체적으로 양호했으며, CUSUM 관리도에서 실제 공정모수의 변화값이 미리 지정한 값과 차이가 많이 날 경우 CUSUM 관리도에 비해 효율이 월등히 좋음을 알 수 있었다.
단위 영역의 결점수는 일반적으로 Poisson 분포를 가정한다. 이 Poisson 분포의 확장된 형태로 ZIP(zero-inflated Poisson) 분포를 고려할 수 있는데, 이 모형은 데이터에 0이 많이 관측되는 경우 잘 적합된다고 알려져 있다. 이 논문에서는 ZIP 분포를 따르는 공정을 관리하는 GLR(generalized likelihood ratio) 관리도 절차를 제안하고 있다. 또한 제안된 GLR 관리도의 효율을 기존에 제안된 CUSUM 관리도들과 비교하였다. 그 결과 제안된 GLR 관리도는 모수의 다양한 변화에 대해 효율이 좋거나 또는 효율이 크게 떨어지지 않았고, 특히 CUSUM 관리도에서 모수가 미리 설정한 방향과 다르게 변화했을 때 효율이 크게 나빠지는 문제를 해결할 수 있는 대안이라는 결론을 얻을 수 있었다.
As the technology has improved and demands of customers have varied, a lot of products are getting diverse and intricate. Consequently, the enterprise that produce products have to simultaneously consider the various variables for the very products. There are some scheme, such as Multivariate control chart and Demerit control chart, designed to simultaneously monitor the variables in the process. In this paper, we present an effective method for process control using the Demerit-CUSUM control chart in the process where nonconforming units or nonconformities are occured by various types. In addition, we show interpretation method for abnormal signal in order to quickly detect the assignable causes as Demerit-CUSUM control chart signals abnormality. we compare performance of Demerit control chart and Demerit-CUSUM control chart using example again used in the existing studies, and present result of performance accoriding to changing sample size and parameter.
CUSUM control charts are widely used to monitor processes with small shifts. CUSUM control charts are, however, less effective in detecting for recurring cycles or frequent small shifts in the processes. With Shewhart control charts, we have applied the variety of run rules to check the stability of process in addition to the situations that some points fall outside the control limits. In this paper, we propose the Z -CUSUM control chart for monitoring the process with recurring cycles or frequent small shifts by use of the zone concept as like the Shewhart control charts.
Journal of the Korean Data and Information Science Society
/
제27권2호
/
pp.539-548
/
2016
This paper is a study on the multivariate CUSUM control charts using three different control statistics for monitoring covariance matrix. We get control limits and ARLs of the proposed multivariate CUSUM control charts using three different control statistics by using computer simulations. The performances of these proposed multivariate CUSUM control charts have been investigated by comparing ARLs. The purpose of control charts is to detect assignable causes of variation so that these causes can be found and eliminated from process, variability will be reduced and the process will be improved. We show that the charts based on three different control statistics are very effective in detecting shifts, especially shifts in covariances when the variables are highly correlated. When variables are highly correlated, our overall recommendation is to use the multivariate CUSUM control charts using trace for detecting changes in covariance matrix.
We suggest a fast and accurate algorithm to compute ARLs of CUSUM chart for controling process variance. The algorithm solves the characteristic integral equations of CUSUM chart (for controling variance). The algorithm is directly applicable for the cases of odd sample sizes. When the sample size is even, by using well-known approximation algorithm combinedly with the new algorithm for neighboring odd sample sizes, we can also evaluate the ARLs of CUSUM charts efficiently and accurately. Based on the new algorithm we consider the optimal design of upward and downward CUSUM charts for controling process variance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.