• Title/Summary/Keyword: Curvature.

Search Result 3,954, Processing Time 0.027 seconds

Numerical Study on the Super Sonic Phenomenon of Compressed Air according to the Flow Path Conditions (유로조건에 따른 압축공기 초음속 유동 현상의 해석 연구)

  • Kim, Seung Mo;Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.470-476
    • /
    • 2019
  • The braking force for a train is generally provided by compressed air. The pressure valve system that is used to apply appropriate braking forces to trains has a complex flow circuit. It is possible to make a channel shape that can increase the flow efficiency by 3D printing. There are restrictions on the flow shape design when using general machining. Therefore, in this study, the compressed air flow was analyzed in a pressure valve system by comparing flow paths made with conventional manufacturing methods and 3D printing. An analysis was done to examine the curvature magnitude of the flow path, the diameter of the flow path, the magnitude of the inlet and reservoir pressure, and the initial temperature of the compressed air when the flow direction changes. The minimization of pressure loss and the uniformity of the flow characteristics influenced the braking efficiency. The curvilinear flow path made through 3D printing was advantageous for improving the braking efficiency compared to the rectangular shape manufactured by general machining.

A study on the ultra precision machining of free-form molds for advanced head-up display device (첨단 헤드업 디스플레이 장치용 비구면 자유형상 금형의 초정밀 가공에 관한 연구)

  • Park, Young-Durk;Jang, Taesuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.290-296
    • /
    • 2019
  • Head-up displays for vehicles play an important role in displaying various information about the safety and convenience of driving on the windshield of the vehicle. In this study, ultra-precision machining was performed and evaluated as a method for machining a large-area aspheric free-form mirror that is applicable to augmented reality technology. Precision diamond cutting is highly accurate and suitable for the production of advanced parts with excellent surface integrity, low surface roughness, and low residual stress. By using an aspheric free-form mold, it is possible to improve the optical transfer function, reduce the distortion path, and realize a special image field curvature. To make such a mold, the diamond cutting method was used, and the result was evaluated using an aspherical shape-measuring machine. As a result, it was possible to the mold with shape accuracy (PV) below $1{\mu}m$ and surface roughness (Ra) below $0.02{\mu}m$.

Correlation of Radiographic and Patient Assessment of Spine Following Correction of Nonstructural Component in Juvenile Idiopathic Scoliosis

  • Lee, Jin Gyeong;Yun, Young Cheol;Jo, Won Jae;Seog, Tae Yong;Yoon, Yong-Soon
    • Annals of Rehabilitation Medicine
    • /
    • v.42 no.6
    • /
    • pp.863-871
    • /
    • 2018
  • Objective To evaluate the association between progression of curvature of scoliosis, and correction for functional component in patients with juvenile idiopathic scoliosis (JIS). Methods We retrospectively reviewed medical data of patients prescribed custom molded foot orthosis (FO) to correct inequality of RCSPA (resting calcaneal stance position angle), and chose 52 patients (26 females, 26 males) with Cobb angle ${\geq}10^{\circ}$ in radiology and uneven pelvic level at iliac crest by different RCSPA (${\geq}3^{\circ}$) as a factor of functional scoliosis. They had different hump angle ${\geq}5^{\circ}$ in forward bending test, for idiopathic scoliosis component. Their mean age and mean period of wearing FO were $79.5{\pm}10.6months$ and $18.6{\pm}0.70months$. Results Cobb angle was reduced from $22.03^{\circ}{\pm}4.39^{\circ}$ initially to $18.86^{\circ}{\pm}7.53^{\circ}$ after wearing FO. Pelvis height difference and RCSPA difference, were reduced from $1.07{\pm}0.25cm$ initially to $0.60{\pm}0.36$, and from $4.25^{\circ}{\pm}0.71^{\circ}$ initially to $1.71^{\circ}{\pm}0.75^{\circ}$ (p<0.01). Cobb angle improved most in 9 months. However, there was no significant improvement for those with more than $25^{\circ}$ of Cobb angle initially. Mean Cobb angle improved in all age groups, but patients less than 6 years had clinically significant improvement of more than $5^{\circ}$. Conclusion JIS can have functional components, which should be identified and managed. Foot orthosis is useful in correcting functional factors, in the case of pelvic inequality caused by different RCSPA, for patients with juvenile idiopathic scoliosis.

Body Pressure Distribution and Textile Surface Deformation Measurement for Quantification of Automotive Seat Design Attributes (운전자의 체압 분포 및 시트변형에 대한 정량화 측정시스템)

  • Kwon, Yeong-Eun;Kim, Yun-Young;Lee, Yong-Goo;Lee, Dongkyu;Kwon, Ohwon;Kang, Shin-Won;Lee, Kang-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.397-402
    • /
    • 2018
  • Proper seat design is critical to the safety, comfort, and ergonomics of automotive driver's seats. To ensure effective seat design, quantitative methods should be used to evaluate the characteristics of automotive seats. This paper presents a system that is capable of simultaneously monitoring body pressure distribution and surface deformation in a textile material. In this study, a textile-based capacitive sensor was used to detect the body pressure distribution in an automotive seat. In addition, a strain gauge sensor was used to detect the degree of curvature deformation due to high-pressure points. The textile-based capacitive sensor was fabricated from the conductive fabric and a polyurethane insulator with a high signal-to-noise ratio. The strain gauge sensor was attached on the guiding film to maximize the effect of its deformation due to bending. Ten pressure sensors were placed symmetrically in the hip area and six strain gauge sensors were distributed on both sides of the seat cushion. A readout circuit monitored the absolute and relative values from the sensors in realtime, and the results were displayed as a color map. Moreover, we verified the proposed system for quantifying the body pressure and fabric deformation by studying 18 participants who performed three predefined postures. The proposed system showed desirable results and is expected to improve seat safety and comfort when applied to the design of various seat types. Moreover, the proposed system will provide analytical criteria in the design and durability testing of automotive seats.

Can proximal Gastrectomy Be Justified for Advanced Adenocarcinoma of the Esophagogastric Junction?

  • Sato, Yuya;Katai, Hitoshi;Ito, Maiko;Yura, Masahiro;Otsuki, Sho;Yamagata, Yukinori;Morita, Shinji
    • Journal of Gastric Cancer
    • /
    • v.18 no.4
    • /
    • pp.339-347
    • /
    • 2018
  • Purpose: To evaluate the status of number 3b lymph node (LN) station in patients with adenocarcinoma of the esophagogastric junction (AEG) and to investigate the optimal indications for radical proximal gastrectomy (PG) for AEG. Materials and Methods: Data of 51 patients with clinically advanced Siewert types II and III AEG who underwent total gastrectomy (TG) between April 2010 and July 2017 were reviewed. The proportion of metastatic LNs at each LN station was examined. Number 3 LN station was separately classified into number 3a and number 3b. The risk factors for number 3b LN metastasis and the clinicopathological features of number 3b-positive AEG patients were investigated. Results: The incidences of LN metastasis were the highest in number 1 (47.1%), followed by number 2 (23.5%), number 3a (39.2%), and number 7 (23.5%) LN stations. LN metastasis in number 3b LN station was detected in 4 patients (7.8%). A gastric invasion length of more than 40 mm was a significant risk factor for number 3b LN metastasis. All 4 patients with number 3b-positive AEG had advanced cancer with a gastric invasion length of more than 40 mm. The 5-year survival rate of patients with a gastric invasion length of more than 40 mm was 50.0%. Conclusions: Radical PG may be indicated for patients with AEG with gastric invasion length of less than 40 mm.

Comparison of the Effects of Magnetically Controlled Growing Rod and Tradiotinal Growing Rod Techniques on the Sagittal Plane in the Treatment of Early-Onset Scoliosis

  • Erdogan, Sinan;Polat, Baris;Atici, Yunus;Ozyalvac, Osman Nuri;Ozturk, Cagatay
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.5
    • /
    • pp.577-585
    • /
    • 2019
  • Objective : Comparing the effects of magnetically controlled growing rod (MCGR) and traditional growing rod (TGR) techniques on the sagittal plane in the treatment of early-onset scoliosis (EOS). Methods : Twelve patients were operated using dual MCGR technique in one center, while 15 patients were operated using dual TGR technique for EOS in another center. Patients' demographic characteristics, complications and radiological measurements such as cobb angle, thoracic kyphosis, lumbar lordosis, T1-S1 range (mm), proximal junctional angle, distal junctional angle, sagittal balance, coronal balance, pelvic incidence, sacral slope and pelvic tilt were assessed and compared in preoperative, postoperative and last follow-up period. Results : Age and sex distributions were similar in both groups. The mean number of lengthening in the MCGR group was 12 (8-15) and 4.8 (3-7) in the TGR group. Two techniques were shown to be effective in controlling the curvature and in the increase of T1-S1 distance. In TGR group, four patients had rod fractures, six patients had screw pull-out and four patients had an infection, whereas three patients had screw pull-out and one patient had infection complications in the MCGR group. Conclusion : There was no significant difference between the two groups in terms of cobb angle, coronal and sagittal balance and sagittal pelvic parameters. MCGR can cause hypokyphosis and proximal junctional kyphosis in a minimum 2-year follow-up period. The implant-related complications were less in the MCGR group. However, larger case groups and longer follow-up periods are required for the better understanding of the superiority of one method on other in terms of complications.

Structural Safety Analysis of a Spherical Flight Simulator Designed with a GFRP-Foam Sandwich Composite (GFRP-폼 샌드위치 복합재료로 설계된 구체 비행 시뮬레이터의 구조 안정성 평가)

  • Hong, Chae-Young;Ji, Wooseok
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.279-283
    • /
    • 2019
  • A flight training simulator of a fully spherical configuration is being developed to precisely and quickly control six degrees of freedom (Dof) motions especially with unlimited rotations. The full-scale simulator should be designed with a lightweight material to reduce inertial effects for fast and stable feedback controls while no structural failure is ensured during operations. In this study, a sandwich composite consisting of glass fiber reinforced plastics and a foam core is used to obtain high specific strengths and specific stiffnesses. T-type stainless steel frames are inserted to minimize the deformation of the sphere curvature. Finite element analysis is carried out to evaluate structural safety of the simulator composed of the sandwich sphere and steel frames. The analysis considers the weights of the equipment and trainee and it is assumed to be 200 kg. Gravity acceleration is also considered. The stresses and displacement acting on the simulator are calculated and the safety is assessed under two different situations.

Effect on Flow Distortion of S-Duct by Boundary Layer Suction (경계층 흡입이 S-Duct의 유동 왜곡에 미치는 영향성 연구)

  • Baeg, Seungyong;Lee, Jihyeong;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.17-25
    • /
    • 2019
  • An intake of Aircraft becomes S-shaped geometry due to spatial limitation or procuring survivability. But curvature of the S-shaped geometry makes secondary flow or flow separation which is the cause of non-uniform pressure distribution. In this study, boundary layer suction is applied to RAE M 2129 S-Duct by attaching sub duct. Design variable is suction location and angle. A mass flow rate drawn out by suction at the sub duct outlet is constant over every model. A grid dependency test was conducted to verify validity of computation. The comparison among the CFD (Computation Fluid Dynamics), ARA experimental result, and ARA computation result of non-dimensional pressure distribution on the Port side and Starboard Side confirmed the validity of CFD. In this study, Distortion Coefficient was used for evaluating aerodynamic performance of S-Duct. The analysis, which was about flow separation, vortex, mass flow rate distribution, and pressure distribution were also investigated. Maximum 26.14% reduction in Distortion Coefficient was verified.

Atmospheric Pressure Floating Electrode-Dielectric Barrier Discharges (FE-DBDs) Having Flexible Electrodes (유연전극을 이용한 대기압 부유전극 유전체 장벽 방전 플라즈마)

  • Kim, Jun-Hyun;Park, Chang Jin;Kim, Chang-Koo
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.432-437
    • /
    • 2019
  • An atmospheric pressure floating electrode-dielectric barrier discharge (FE-DBD) system having flexible electrodes was developed and its plasma characteristics was investigated. Polytetrafluoroethylene (PTFE), polydiemethylsiloxane (PDMS), and polyethylene terephthalate (PET) were used as flexible dielectrics for flexible powered-electrodes. The optical intensity and electron temperature of the atmospheric pressure FE-DBD plasma increased with the voltage applied to the powered electrode, and increased in the order of PTFE < PDMS < PET at a fixed voltage. This behavior was explained in terms of the change in the capacitance of the flexible dielectrics with the dielectric type and voltage, implying that the plasma characteristics of an atmospheric pressure FE-DBD having flexible electrodes can be controlled by modulating the flexible dielectrics for the flexible powered-electrode and the voltage applied to the powered electrode. Because an atmospheric pressure FE-DBD system can generate a plasma along the curvature of skins, it is expected to have useful applications in plasma medicine.

Figure of merit and bending characteristics of Mn-SnO2/Ag/Mn-SnO2 tri-layer film (Mn-SnO2/Ag/Mn-SnO2 3중 다층막의 성능지수와 밴딩 특성)

  • Cho, Youngsoo;Jang, Guneik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.4
    • /
    • pp.190-195
    • /
    • 2021
  • Typical Mn-SnO2/Ag/Mn-SnO2 tri-layer films were prepared on a PET substrate by RF/DC magnetron sputtering method at room temperature. Based on EMP simulation, the thicknesses of the top and bottom Mn-doped SnO2 layers were kept at 40 nm and the Ag layer was maintained at 13 nm for continuous electrical conduction. The experimentally measured optical transmittances at 550 nm wavelength were ranged from 82.9 to 88.1 % and sheet resistances were varied from 5.9 to 6.9 Ω/☐. The highest value of figure of merit, ϕTC was 48.1 × 10-3 Ω-1. Based on bending test under 4 and 5 mm of inner and outer curvature radius condition, tri-layer film resistance varies only by approximately 1.5 % after 10,000 bending cycles, showing excellent mechanical flexibility.