Browse > Article
http://dx.doi.org/10.9713/kcer.2019.57.3.432

Atmospheric Pressure Floating Electrode-Dielectric Barrier Discharges (FE-DBDs) Having Flexible Electrodes  

Kim, Jun-Hyun (Institute of NT-IT Fusing Technology, Ajou University)
Park, Chang Jin (Department of Chemical Engineering and Department of Energy Systems Research, Ajou University)
Kim, Chang-Koo (Department of Chemical Engineering and Department of Energy Systems Research, Ajou University)
Publication Information
Korean Chemical Engineering Research / v.57, no.3, 2019 , pp. 432-437 More about this Journal
Abstract
An atmospheric pressure floating electrode-dielectric barrier discharge (FE-DBD) system having flexible electrodes was developed and its plasma characteristics was investigated. Polytetrafluoroethylene (PTFE), polydiemethylsiloxane (PDMS), and polyethylene terephthalate (PET) were used as flexible dielectrics for flexible powered-electrodes. The optical intensity and electron temperature of the atmospheric pressure FE-DBD plasma increased with the voltage applied to the powered electrode, and increased in the order of PTFE < PDMS < PET at a fixed voltage. This behavior was explained in terms of the change in the capacitance of the flexible dielectrics with the dielectric type and voltage, implying that the plasma characteristics of an atmospheric pressure FE-DBD having flexible electrodes can be controlled by modulating the flexible dielectrics for the flexible powered-electrode and the voltage applied to the powered electrode. Because an atmospheric pressure FE-DBD system can generate a plasma along the curvature of skins, it is expected to have useful applications in plasma medicine.
Keywords
Atmospheric pressure floating electrode-dielectric barrier discharge; Plasma; Flexible electrode; Dielectrics; Plasma medicine;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Pei, X., Liu, J., Xian, Y. and Lu, X., "A Battery-Operated Atmospheric- Pressure Plasma Wand for Biomedical Applications," J. Phys. D: Appl. Phys., 47, 145204-1145204-6(2014).   DOI
2 Fridman, G., Peddinghaus, M., Ayan, H., Fridman, A., Balasubramanian, M., Gutsol, A., Brooks, A. and Friedman, G., "Blood Coagulation and Living Tissue Sterilization by Floating-Electrode Dielectric Barrier Discharge in Air," Plasma Chem. Plasma Process., 26, 425-442(2006).   DOI
3 Fridman, G., Shereshevsky, A., Jost, M. M., Brooks, A. D., Fridman, A., Gutsol, A., Vasilets, V. and Friedman, G., "Floating Electrode Dielectric Barrier Discharge Plasma in Air Promoting Apoptotic Behavior in Melanoma Skin Cancer Cell Lines," Plasma Chem. Plasma Process., 27, 163-176(2007).   DOI
4 Babaeva, N. Y. and Kushner, M. J., Intracellular Electric Fields Produced by Dielectric Barrier Discharge Treatment of Skin, J. Phys. D: Appl. Phys., 43, 185206-1-185206-12(2010).   DOI
5 Walsh, J. L., Liu, D. X., Iza, F., Rong, M. Z. and Kong, M. G., "Contrasting Characteristics of Sub-microsecond Pulsed Atmospheric Air and Atmospheric Pressure Helium-Oxygen Glow Discharge," J. Phys. D: Appl. Phys., 43, 032001-1-032001-7(2010).   DOI
6 Baroch, P., Saito, N. and Takai, O., "Special Type of Plasma Dielectric Barrier Discharge Reactor for Direct Ozonization of Water and Degradation of Organic Pollution," J. Phys. D: Appl. Phys., 41, 085207-1-085207-6(2008).   DOI
7 Ozkan, A., Dufour, T., Bogaerts, A. and Reniers, F., "How Do the Barrier Thickness and Dielectric Material Influence the Filamentary Mode and $CO_2$ Conversion in a Flowing DBD?," Plasma Sources Sci. Technol., 25, 045016-1-045016-11(2016).   DOI
8 Valdivia-Barrientos, R., Pacheco-Sotelo, J., Pacheco-Pacheco, M., Benitez-Read, J. S. and Lopez-Callejas, R., "Analysis and Electrical Modelling of a Cylindrical DBD Configuration at Different Operating Frequencies," Plasma Sources Sci. Technol., 15, 237- 245(2006).   DOI
9 Bose, D., Rauf, S., Hash, D. B., Govindan, T. R. and Meyyappan, M., "Monte Carlo Sensitivity Analysis of $CF_2$ and CF Radical Densities in a c-$C_4F_8$ Plasma," J. Vac. Sci. Technol. A, 22, 2290-2298 (2004).   DOI
10 Itagaki, N., Iwata, S., Muta, K., Yonesu, A., Kawakami, S., Ishii, N. and Kawai, Y., "Electron-Temperature Dependence of Nitrogen Dissociation in 915 MHz ECR Plasma," Thin Solid Films, 435, 259-263(2003).   DOI
11 Ohno, N., Razzak, M. A., Ukai, H., Takamura, S. and Uesugi, Y., "Validity of Electron Temperature Measurement by Using Boltzmann Plot Method in Radio Frequency Inductive Discharge in the Atmospheric Pressure Range," Plasma and Fusion Research, 1, 028-1-028-9(2006).   DOI
12 Xiao, D., Cheng, C., Shen, J., Lan, Y., Xe, H., Shu, X., Meng, Y., Li, J. and Chu, P. K., "Characteristics of Atmospheric-Pressure Non-Thermal $N_2$ and $N_2/O_2$ Gas Mixture Plasma Jet," J. Appl. Phys., 115, 033303-1-033303-10(2014).   DOI
13 http://physics.nist.gov/PhysRefData/ASD/index.html.
14 Camacho, J. J., Poyato, J. M. L., Diaz, L. and Santos, M., "Optical Emission Studies of Nitrogen Plasma Generated by IR $CO_2$ Laser Pulses," J. Phys. B: At. Mol. Phys., 40, 4573-4590(2007).   DOI
15 Kim, J. H., Choi, Y. H. and Hwang, Y. S., "Electron Density and Temperature Measurement Method by Using Emission Spectroscopy in Atmospheric Pressure Nonequilibrium Nitrogen Plasmas," Physics of Plasmas, 13, 093501-1-093501-7(2006).   DOI
16 Lee, T. H., Lim, B. R., Yong, K. J., Kwon, W. S. and Park, M. W., "Effects of Oxygen Plasma Generated in Magnetron Sputtering of Ruthenium Oxide on Pentacene Thin Film Transistors," Korean J. Chem. Eng., 34, 2502-2506(2017).   DOI
17 Schaepkens, M., Oehrlein, G. S., Hedlund, C., Jonsson, L. B. and Blom, H. O., "Selective $SiO_2$-to-$Si_3N_4$ Etching in Inductively Coupled Fluorocarbon Plasmas: Angular Dependence of $SiO_2$ and $Si_3N_4$ Etching Rates," J. Vac. Sci. Technol. A, 16, 3281-3286(1998).   DOI
18 Kim, J.-H., Cho, S.-W., Park, C. J., Chae, H. and Kim, C.-K., "Angular Dependences of $SiO_2$ Etch Rates at Different Bias Voltages in $CF_4$, $C_2F_6$, and $C_4F_8$ Plasmas," Thin Solid Films, 637, 43- 48(2017).   DOI
19 Cho, S.-W., Kim, C.-K., Lee, J.-K., Moon, S. H. and Chae, H., "Angular Dependences of $SiO_2$ Etch Rates in $C4F_6/O_2/Ar$ and $C_4F_6/CH_2F_2/O_2/Ar$ Plasmas," J. Vac. Sci. Technol. A, 30, 051301-1-051301-6(2012).   DOI
20 Ji, S. H., Jang, W. S., Son, J. W. and Kim, D. H., "Characteristics of NiO Films Prepared by Atomic Layer Deposition Using Bis (ethylcyclopentadienyl)-Ni and $O_2$ Plasma," Korean J. Chem. Eng., 35, 2474-2479(2018).   DOI
21 Choi, J. H., Kim, S. J., Kim, H. T. and Cho, S. M., "Damage to Amorphous Indium-Gallium-Zinc-Oxide Thin Film Transistors under $Cl_2$ and $BCl_3$ Plasma," Korean J. Chem. Eng., 35, 1348-1353 (2018).   DOI
22 Fridman, G., Friedman, G., Gutsol. A., Shekhter, A. B., Vasilets, V. N. and Fridman, A., "Applied Plasma Medicine," Plasma Process. Polym., 5, 503-533(2008).   DOI
23 Weltmann, K.-D. and von Woedtke, T., "Plasma Medicine - Current State of Research and Medical Application," Plasma Phys. Control. Fusion, 59, 014031-1-014031-11(2017).   DOI
24 Ehlbeck, J., Schnabel, U., Polak, M., Winter, J., von Woedtke, T., Brandenburg, R., von dem Hagen, T. and Weltmann, K.-D., "Low Temperature Atmospheric Pressure Plasma Sources for$C_2F_6$ Microbial Decontamination," J. Phys. D: Appl. Phys., 44, 013002-1-013002-18(2011).   DOI
25 Graves, D. B., "The Emerging Role of Reactive Oxygen and Nitrogen Species in Redox Biology and Some Implications for Plasma Applications to Medicine and Biology," J. Phys. D: Appl. Phys., 45, 206330-1-263001-42(2012).   DOI
26 Xiong, Z., Roe, J., Grammer, T. C. and Graves, D. B., "Plasma Treatment of Onychomycosis," Plasma Process. Polym., 13, 588-597(2016).   DOI
27 Kogelschatz, U., "Dielectric-barrier Discharges: Their History, Discharge Physics, and Industrial Applications," Plasma Chem. Plasma Process., 23, 1-46(2003).   DOI
28 Kolb, J. F., Mohamed, A. -A., Price, R. O., Swanson, R. J., Bowman, A., Chiavarini, R. L., Stacey, M. and Schoenbach, K. H., "Cold Atmospheric Pressure Air Plasma Jet for Medical Applications," Appl. Phys. Lett., 92, 241501-1-241501-3(2008).   DOI
29 Lu, X. P., Jiang, Z. H., Xiong, Q., Tang, Z. Y. and Pan, Y., "A Single Electrode Room-Temperature Plasma Jet Device for Biomedical Applications," Appl. Phys. Lett., 92, 151504-1-151504-3(2008).   DOI
30 Lee, H. W., Nam, S. H., Mohamed, A. H. Kim, G. C. and Lee, J. K., "Atmospheric Pressure Plasma Jet Composed of Three Electrodes: Application to Tooth Bleaching," Plasma Process. Polym., 7, 274-280(2010).   DOI
31 Pavlovich, M. J., Chen, Z., Sakiyama, Y., Clark, D. S. and Graves, D. B., "Effect of Discharge Parameters and Surface Characteristics on Ambient-Gas Plasma Disinfection," Plasma Process. Polym., 10, 69-76(2013).   DOI
32 Mangolini, L., Anderson, C., Heberlein, J. and Kortshagen, U. "Effects of Current Limitation through the Dielectric in Atmospheric Pressure Glows in Helium," J. Phys. D: Appl. Phys., 37, 1021-1030(2004).   DOI
33 Hong, Y., Niu, J., Pan, J., Bi, Z., Ni, W., Liu, D., Li, J. and Wu, Y., "Electron Temperature and Density Measurement of a Dielectric Barrier Discharge Argon Plasma Generated with Tube-to-Plate Electrodes in Water," Vacuum, 130, 130-136(2016).   DOI