• Title/Summary/Keyword: Current-source rectifier

Search Result 145, Processing Time 0.03 seconds

A Highly Stable Current-Controlled Power Supply (고안정 전류제어 전원장치)

  • Kwon, Bong-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.2
    • /
    • pp.144-155
    • /
    • 1992
  • A design of a highly stable current-controlled power supply combining the phase-controlled rectifier (PCR), passive filter and active filter is investigated. A digital phase-looked voltage control (PLVC) with a capability of compensating the thyristor firing angles under unvalanced power source is proposed` otherwise the PCR output voltage has low-order subharmonics whose suppression requires a bulky passive filter. The digital PLVC has a fast dynamic characteristics as an inner control loop of the PCR. To suppress further the output ripple, an active filter using a transformer is introduced and its design is described through the frequency domain analysis. An optimal integral, proportional and measurable variable feedback (IPM) controller is designed using the time-weighted performance index based on the time domain analysis. The design method based on the time-weighted performance index gives better response characteristics than that based on the conventional performance index. It is also shown via experimental results that the proposed scheme gives better response characteristics than that based on the conventional performance index. It is also shown via experimental results that the proposed scheme gives good dynamic and static performances.

A NEW INSTANTANEOUS VOLTAGE COMPENSATOR WITH FUNCTION OF ACTIVE POWER FILTERING

  • Lee, Seung-Yo;Lee, Jeong-Min;Lee, Sang-Yong;Mok, Hyung-Soo;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.780-784
    • /
    • 1998
  • A novel active input unbalance voltage compensator with harmonic current compensating capability is proposed and the operating principle of the proposed system is presented in the 3-phase power system. The proposed system performs both the voltage regulation of the load and the compensation of the harmonic currents generated due to nonlinear load such as diode rectifier. The system to compensate unbalanced voltage and hramonic currents is composed of a 3-phase voltage source inverter, LC filter, series transformer and passive devices at the load side of the line. The compensating voltage to regulate the load voltage and to remove the harmonic current components is transmitted to the line by the series transformer. The validity of the line by the series transformer. The validity of the proposed system is proved by the results of computer simulation.

  • PDF

A cooperative control study of Jeju ±80kV 60MW HVDC for voltage stability enhancement (제주 ±80kV 60MW HVDC 협조 제어 방안 연구)

  • Yoon, Jong-Su;Seo, Bo-Hyeok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1221-1225
    • /
    • 2012
  • This paper describes CSC(Current Sourced Converters)-based HVDC operational strategy for voltage stability enhancement in the power system. In case of CSC-based HVDC system, rectifier and inverter consume reactive power up to about 60% of converter rating. Therefore, CSC-based HVDC is basically not useful system for voltage stability even if AC filters and shunt capacitors are attached. But, If the particular power system condition is fulfilled, CSC-based HVDC also can be the rapid reactive power source for voltage stability enhancement using a cooperative control with converter and AC filters/Shunt Capacitors. In this paper, the cooperative control algorithm is presented and simulated to ${\pm}80kV$ 60MW HVDC system in Jeju island.

Two-stage & Single-stage Power Factor Correction circuits for Single-phase Power source (단상전원에 적합한 단일단 및 2단 역률개선회로)

  • Kim Chert-Jin;Yoo Byeong-Kyu;Kim Choong-Sik;Kim Young-Tae
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1214-1216
    • /
    • 2004
  • Conventional Switched Mode Power Supplies(SMPS) with diode-capacitor rectifier have distorted input current waveform with high harmonic contents. Typically, these SMPS have a power factor lower than 0,65. To improve with this problem the power factor correction(PFC) circuit of power supplies has to be introduced. PFC circuit have tendency to be applied in new power supply designs. The input active power factor correction circuits can be implemented using either the two-stage or the single-stage approach. In this paper, the comparative analysis of power factor correction circuit using feedforward control with average current mode single-stage flyback method converter and two-stage converter which is combination of boost and flyback converter. The two prototypes of 50W were designed and tested a laboratory experimental. Also, the comparative analysis is confirmed by simulation and experimental results.

  • PDF

A Study on the Problems of the Neutral Line Due to the 3rd Harmonic (중성선 공용시 3배수 고조파에 따른 문제점 분석)

  • Cho, Nam-Hun;Jung, Jum-Soo;Park, Yong-Woo;Ha, Bok-Nam;Lee, Heung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.10
    • /
    • pp.76-83
    • /
    • 2008
  • The neutral current is made of both the load unbalanced current and the 3rd harmonic. The 3rd harmonic which is the source of the main neutral current is generated from the loads using bridge rectifier circuits on their input produce currents. TV, computer and monitor which are belong to IEC 61000-3-2 Class D are the main 3rd harmonic current sources. In order to show the affect of the distribution system by these disturbances, this paper has studied the current standards of the Korea Electric and considers the problem of the neutral common.

Torque Predictive Control for Permanent Magnet Synchronous Motor Drives Using Indirect Matrix Converter

  • Bak, Yeongsu;Jang, Yun;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1536-1543
    • /
    • 2019
  • This paper presents an improved torque predictive control (TPC) for permanent magnet synchronous motors (PMSMs) using an indirect matrix converter (IMC). The IMC has characteristics such as a high power density and sinusoidal waveforms of the input-output currents. Additionally, this configuration does not have any DC-link capacitors. Due to these advantages of the IMC, it is used in various application field such as electric vehicles and railway cars. Recently, research on various torque control methods for PMSM drives using an IMC is being actively pursued. In this paper, an improved TPC method for PMSM drives using an IMC is proposed. In the improved TPC method, the magnitudes of the voltage vectors applied to control the torque and flux of the PMSM are adjusted depending on the PMSM torque control such as the steady state and transient response. Therefore, it is able to reduce the ripples of the output current and torque in the low-speed and high-speed load ranges. Additionally, the improved TPC can improve the dynamic torque response when compared with the conventional TPC. The effectiveness of the improved TPC method is verified by experimental results.

A Study on Control and Compensating Characteristics of Active Series Voltage Compensator with Harmonic Current Compensating Capability (고조파전류 보상 기능을 갖는 능동 직렬 전압보상기의 제어 및 보상특성에 관한 연구)

  • 이승요;김홍성;최규하;신우석;김홍근
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.5
    • /
    • pp.484-492
    • /
    • 2000
  • In this paper, a voltage compensator with harmonic current compensating capability is studied and its compensating characteristics are analyzed. Like the hybrid active power filter, the proposed system is composed of parallel LC passive filter and series PWM converter connected to power line through series transformer. It is shown that the compensation of harmonic current generated due to nonlinear loads such as diode rectifier and instantaneous voltage compensation of the source are performed through the proposed compensating system. The operating principle of the proposed system is described through a single-phase equivalent circuit and the control strategy is suggested on the d-q rotating reference frame of the 3-phase system. Also, experiment is carried out to verify compensating characteristics of the proposed system.

  • PDF

Energy Regenerative 3-Phase Bidirectional AC-DC Converter for the Secondary Battery Charge/Discharge System (에너지 회수가 가능한 2차전지 충방전시스템용 3상 양방향 AC-DC 컨버터)

  • Lim, Seung-Beom;Won, Hwa-Young;Chae, Soo-Yong;Seo, Young-Min;Lee, Jun-Young;Ko, Jong-Sun;Hong, Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.259-261
    • /
    • 2008
  • The electronic products such as laptop PC, cellular phone, robots and etc. need the DC power source. Recently, the secondary battery is frequently used as the portable DC power source and it needs forming process. In this paper, we proposed the bidirectional converter that the battery can be charged with high power factor and the discharged energy is regenerated into AC power source. In the charging mode, the converter acts as the boost rectifier. And the AC input current is controlled in phase with the AC input voltage. As a result, the power factor is improved nearly to unity. In the discharging mode, the DC power of battery wasted in resistor is regenerated to the AC bus line. Finally, the validity of the proposed bidirectional converter is verified by computer simulations and experimentation.

  • PDF

A Bidirectional Single-Stage DC/AC Converter for Grid Connected Energy Storage Systems

  • Chen, Jianliang;Liao, Xiaozhong;Sha, Deshang
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1026-1034
    • /
    • 2015
  • In this paper, a unified control strategy using the current space vector modulation (CSVM) technique is proposed and applied to a bidirectional three-phase DC/AC converter. The operation of the converter changes with the direction of the power flow. In the charging mode, it works as a buck type rectifier; and during the discharging mode, it operates as a boost type inverter, which makes it suitable as an interface between high voltage AC grids and low voltage energy storage devices. This topology has the following advantages: high conversion efficiency, high power factor at the grid side, tight control of the charging current and fast transition between the charging and discharging modes. The operating principle of the mode analysis, the gate signal generation, the general control strategy and the transition from a constant current (CC) to a constant voltage (CV) in the charging mode are discussed. The proposed control strategy has been validated by simulations and experimental results obtained with a 1kW laboratory prototype using supercapacitors as an energy storage device.

Design of DC Side Voltage and Compensation Analysis of THD for Shunt Power Quality Controller under System Load of Rectifier with R-L Load

  • Zhao, Guopeng;Han, Minxiao
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.30-40
    • /
    • 2015
  • For a shunt power quality controller (SPQC) the DC side voltage value which is closely related to the compensation performance is a significant parameter. Buy so far, very little discussion has been conducted on this in a quantitative manner by previous publications. In this paper, a method to design the DC side voltage of SPQC is presented according to the compensation performance in the single-phase system and the three-phase system respectively. First, for the reactive current and the harmonic current compensation, a required minimal value of the DC side voltage with a zero total harmonic distortion (THD) of the source current and a unit power factor is obtained for a typical load, through the equivalent circuit analysis and the Fourier Transform analytical expressions. Second, when the DC side voltage of SPQC is lower than the above-obtained minimal value, the quantitative relationship between the DC side voltage and the THD after compensation is also elaborated using the curve diagram. Hardware experimental results verify the design method.