• Title/Summary/Keyword: Current transient

Search Result 1,271, Processing Time 0.03 seconds

Transient characteristics of current lead losses for the large scale high-temperature superconducting rotating machine

  • Le, T.D.;Kim, J.H.;Park, S.I.;Kim, D.J.;Lee, H.G.;Yoon, Y.S.;Jo, Y.S.;Yoon, K.Y.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.62-65
    • /
    • 2014
  • To minimize most heat loss of current lead for high-temperature superconducting (HTS) rotating machine, the choice of conductor properties and lead geometry - such as length, cross section, and cooling surface area - are one of the various significant factors must be selected. Therefore, an optimal lead for large scale of HTS rotating machine has presented before. Not let up with these trends, this paper continues to improve of diminishing heat loss for HTS part according to different model. It also determines the simplification conditions for an evaluation of the main flux flow loss and eddy current loss transient characteristics during charging and discharging period.

Electro-optical Characterization of OLED Device

  • Lee Soon-Seok;Kim Ki-Seok;Lim Sung-Kyoo
    • International Journal of Contents
    • /
    • v.2 no.3
    • /
    • pp.6-10
    • /
    • 2006
  • Small molecule OLED devices were fabricated and the electro-optical characteristics were analyzed. The luminance and color coordinate of the fabricated OLED device were $24,390cd/m^2$ and (x=0.15, y=0.22), respectively. Current efficiency of 6.8 cd/A and power efficiency of 2.4 lm/W were also obtained under DC operating condition. Transient light intensity was also measured by using Si photodiode.

  • PDF

Asymmetry Components Reduction using Superconducting Fault Current Limiter Operation in Transient Period (비대칭 고장전류 저감을 위한 초전도 한류기 동작 분석)

  • Rhee, Sang-Bong;Kim, Chul-Hwan;Kim, Kyu-Ho;Kim, Jae-Chul;Hyun, Ok-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.381-382
    • /
    • 2008
  • This paper presents a novel scheme for reducing an asymmetry current with SFCL (Superconducting Fault Current Limiter) operation during transient period, when a fault occurs in power systems. The main idea is installation an auxiliary SFCL with characteristics, which reduces the asymmetry fault current in first half cycle before the operating of main SFCL. For proper activities of SFCLs, the principle of asymmetry current nature is reviewed. A scheme of asymmetry components reduction with SFCL is then explained. The EMTP/ATPDraw model of SFCLs using MODELS language developed and simulated to verify the performance and effectiveness.

  • PDF

A Study on the Protection Methods of Sheath Circulating Current Reduction Device in Transient State (과도상태에서의 시스순환전류 저감장치 보호방안에 관한 연구)

  • Kang, Ji-Won;Jung, Chae-Kyun;Lee, Jong-Beom;Lee, Dong-Il;Jung, Gil-Jo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.53-58
    • /
    • 2002
  • Sheath circulating current is increased as the change of sheath mutual impedance which is caused by imbalance of cable system, and different section length between joint box. If excessive current flows in sheath. sheath loss will be increased and then transmission capacity of underground transmission system is reduced. Accordingly, This paper proposed sheath current reduction device using resistor and reactor and proved the reduction effect of that device using EMTP/ATP. And also in this paper, when transients are occurred at the underground system with reduction device by ground fault and lightning surge. we analyzes transient effect of system variously. From this result. authors establish the protection methods of sheath circulating current reduction device.

  • PDF

Active Short Circuit Control Method to Reduce Overcurrent and Oscillation Current in PMSM (영구자석 동기모터 진동 및 과전류 저감을 위한 능동단락회로 제어 기법)

  • Choi, Jong-Won;Kim, Yoon-Jae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.4
    • /
    • pp.339-347
    • /
    • 2022
  • This study proposes the mitigation method for overcurrent and oscillation motor current in an active short-circuit operation. This operation is attracting attention as the safe state of electric vehicle traction inverters. However, the active short-circuit operation generates oscillation and overcurrent of motor currents during a transient state. The proposed method uses two different safe states in PMSM, such as active short circuit and freewheeling. The active short circuit is used for safe state in a steady state. To reduce the overshoot and oscillation, a freewheeling state is injected between active short-circuit operation by comparing the motor phase current with an analytically calculated steady-state motor current. Freewheeling state is only used in a transient state. The performance is demonstrated through simulations and experimental results. The peak current of the motor was reduced from 52 A to 40 A, and oscillation time was reduced.

Study on Prediction Method for ELF Transient Magnetic Field from Home Appliances (가전기기에서 발생되는 극저주파 과도자계 예측기법 연구)

  • Ju, Mun-No;Yang, Kwang-Ho;Myung, Sung-Ho;Min, Suk-Won
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.11
    • /
    • pp.616-621
    • /
    • 2002
  • With biological effects by ELF (Extremely Low Frequency) magnetic field generated from power system, the transient magnetic field from electric appliances is a major issue presently. Because the transient magnetic field induces higher current than the power frequency field inside living bodies, transient magnetic field exposure has been much focused. In this paper, it is shown that transient magnetic field from electric home appliances can be characterized as magnetic dipole moment. In this method, the dipole moment vector is assumed by allowing an uncertainty of 6dB in the estimated field. A parameter M that represents biological interaction was applied also. The proposed method was applied to 7 types of appliances (hair drier, heater, VDT, etc.) and their equivalent magnetic dipole moment and harmonic components were estimated. As the results, the useful data for quantifying magnetic field distribution around electric appliances were obtained.

Analysis for the impulsive impedance of counterpoise (매설지선의 임펄스임피던스의 해석)

  • Joe, Jeong-Hyeon;Kim, Jong-Ho;Beak, Young-Hwan;Kim, Dong-Seong;Lee, Gang-Su;Kim, Ki-Bok;Lee, Bok-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.88-91
    • /
    • 2009
  • For lightning currents, a grounding system shows the transient grounding impedance characteristics. A grounding system for protection against lightning should be evaluated by the transient grounding impedance, not it's ground resistance. The transient grounding impedance varies with the shape of ground electrode and earth characteristics as well as the waveform of lightning surge current. For the analysis and practical use of transient grounding impedance, the characteristics of transient grounding impedance should be analyzed theoretically and this paper suggests the theoretical analysis for the transient grounding impedance of counterpoise by using the distributed parameter circuit model. EMTP and Matlab are used to simulate the distributed parameter circuit model of counterpoise and the adequacy of the distributed parameter model of counterpoise is examined by comparing the simulated results with the measured results.

  • PDF

Characteristics of Transient Grounding Impedances of Counterpoises Relevant to the Injected Point of Impulse Currents (임펄스전류의 인가위치에 따른 매설지선의 과도접지임피던스 특성)

  • Li, Feng;Jung, Dong-Chul;Kim, Jong-Ho;Yoo, Jae-Duk;Kim, Dong-Kyu;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.62-69
    • /
    • 2010
  • This paper presents the dependances of transient grounding impedances of counterpoises on the soil structures and the injected point of impulse currents. The transient and conventional grounding impedances of the 25 and 50[m] counterpoises buried in the soil with different resistivity were measured and analyzed as a function of the rise time of impulse currents. As a result, the transient grounding impedances give an inductive behavior, and the trend of the conventional grounding impedances is similar to that of the transient grounding impedances. The ground resistance of counterpoises is irrespective to the injected of impulse current, but the transient and conventional grounding impedances in a short time range especially depend on the soil resistivity and position of the injected point of impulse currents.

Digitally Current Controlled DC-DC Switching Converters Using an Adjacent Cycle Sampling Strategy

  • Wei, Tingcun;Wang, Yulin;Li, Feng;Chen, Nan;Wang, Jia
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.227-237
    • /
    • 2016
  • A novel digital current control strategy for digitally controlled DC-DC switching converters, referred to as Adjacent Cycle Sampling (ACS), is proposed in this paper. For the ACS current control strategy, the available time interval from sampling the current to updating the duty ratio, is approximately one switching cycle. In addition, it is independent of the duty ratio. As a result, the contradiction between the processing speed of the hardware and the transient response speed can be effectively relaxed by using the ACS current control strategy. For digitally controlled buck DC-DC switching converters with trailing-edge modulation, digital current control algorithms with the ACS control strategy are derived for three different control objectives. These objectives are the valley, average, and peak inductor currents. In addition, the sub-harmonic oscillations of the above current control algorithms are analyzed and eliminated by using the digital slope compensation (DSC) method. Experimental results based on a FPGA are given, which verify the theoretical analysis results very well. It can be concluded that the ACS control has a faster transient response speed than the time delay control, and that its requirements for hardware processing speed can be reduced when compared with the deadbeat control. Therefore, it promises to be one of the key technologies for high-frequency DC-DC switching converters.

An Analysis Method for the Transient Ground Impedance Using Variable Frequency and Lightning Impulse Current (가변주파수 및 임펄스 전류를 이용한 과도접지임피던스 분석)

  • Eom, Ju-Hong;Cho, Sung-Chul;Lee, Tae-Hyung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.100-108
    • /
    • 2008
  • The transient ground impedance depending on configuration, size, and material of grounding electrodes as well as the shapes of impulse currents, has a significant affect on the performance of the grounding system. This paper presents experimental results in regard to the analysis method of transient ground impedance using the lightning impulse and variable frequency currents. Also a new estimation method to replace the effective surge impedance for transient ground impedance was proposed. The ground electrodes used in this experiment are virtual ground electrodes including both resistance and inductance components, carbon ground electrode with 1[m] length, copper electrode with 9[m] length and counterpoise with 40[m] length. Ground impedances using the proposed method were measured respectively. Comparing with the ground impedance using variable frequency current the conventional ground impedance($Z_1$) calculated from the peak values of impulse voltage and impulse current is observed more correct method for evaluating the performance of ground electrode than the effective surge impedance.