• Title/Summary/Keyword: Current transformer saturation

Search Result 76, Processing Time 0.043 seconds

Magnetic Flux Saturation Analysis of Matching Transformer Considering Characteristic of Dynamic Voltage Restorer(DVR) (DVR의 특성을 고려한 매칭변압기의 자속포화 해석)

  • Shon, Jin-Geun;Kim, Dong-Joon;Kang, Min-Gu;Jeon, Hee-Jong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.3
    • /
    • pp.236-243
    • /
    • 2008
  • This paper analyses magnetic flux saturation of matching transformer considering characteristic of dynamic voltage restorer(DVR) system to solve voltage sags which are considered the dominant disturbances affecting power quality. This DVR consist of PWM inverter to inject arbitrary voltage, LC low pass filter and matching transformer for isolation and grid connection. However, the matching transformer has an excess of inrush current by magnetic flux saturation in the core of transformer. Due to this inrush current, the rating of matching transformers is double for needed nominal rating for protection of DVR. Therefore, in this paper, an advanced modeling method of magnetic flux saturation is used to analyze a magnitude and characteristic of magnetizing current. Simulation and experimental results considering characteristic of DVR system are provided to demonstrate the validity of the proposed analysis method.

Method for Detection of Saturation of a Current Transformer (전류변성기의 포화 검출을 위한 알고리즘 개발)

  • Nam, Soon-Ryul;Choi, Joon-Ho;Kang, Sang-Hee;Min, Sang-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.879-884
    • /
    • 2009
  • A Method for detection of saturation of a current transformer(CT) is proposed. The algorithm is initiated when the end point of a saturation period is detected. This detection is achieved by checking the time interval between the adjacent zero-crossing points of the second derivative of the secondary current. Once the end point of the saturation period is detected, the beginning point of the corresponding saturation period is determined by backward examination of the sum of the secondary current from the end point. The performance of the algorithm was evaluated for a-g faults on a 345 kV 100km overhead transmission line. The Electromagnetic Transient Program(EMTP) was used to generate fault current signals for different fault inception angles and different remanent fluxes. The performance evaluation shows that the proposed algorithm successfully detects the saturation period even in the presence of a remanent flux.

Study on Transformer Saturation in Isolated Full-Bridge DC-DC Converters (절연형 풀브리지 DC-DC 컨버터에서의 변압기 포화에 관한 연구)

  • Kim, Jeonghun;Cha, Honnyong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.261-268
    • /
    • 2020
  • Transformer saturation in full bridge (FB) isolated DC-DC converters is caused by uneven switching speeds and voltage drops in semiconductor devices and mismatched gate signals. In order to prevent transformer saturation, most popular and widely used approach is to insert a capacitor in series with the transformer windings. This study conducts extensive analyses on transformer saturation and the effect of DC blocking capacitors when they are placed in the primary or secondary windings of a transformer. The effect of the DC blocking capacitors is verified in voltage-fed and current-fed FB converters.

AR Model and LSQ Based Compensation Method for the Saturated Secondary Current of a Current Transformer (AR 모델 및 LSQ 기반 변류기 2차 전류 복원 기법)

  • Chang, Soo-Young;Lee, Dong-Gyu;Kang, Sang-Hee
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.6
    • /
    • pp.221-226
    • /
    • 2006
  • The current flowing though a power line is measured by a current transformer (CT). Since a CT is a kind of transformer, saturation of magnetic flux in the core may occur when a large primary current flows. This saturation makes the secondary current of a CT distorted and causes problems in the protection point of view. Because of the current distortion, a protection relay cannot collect the correct information showing how the primary power system changed. Consequently, the current distortion may cause the mal-operation or operation time delay of protective relay. In this paper, an algorithm based on AR model and LSQ is proposed to compensate the saturated CT secondary currents. Various test results indicate that the proposed algorithm can accurately compensate a severely distorted secondary current and is not affected by remanence.

Optimal Design considering Magnetic Saturation Characteristic of Current Transformers for the Overcurrent Warning Circuit (과전류 경고 회로용 변류기의 자기포화 특성을 고려한 최적 설계)

  • Kim, Sun-Jong;Park, Eui-Jong;Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.7
    • /
    • pp.781-786
    • /
    • 2015
  • In this paper, we analyzed characteristic of window type current transformer and we performed the optimal design consider to the loss; in order to design the current transformer figured signal of overcurrent warning circuit. The core size of window type current transformer was determined by the secondary coil turns. We analyzed current waveform, which is appeared by the number of coil turns on the core, we made sure the relation of secondary coil turns and load resistance in order to improve the non-sinusoidal wave by the flux saturation of the current transformer core. Additionally, we did improvement of the accuracy and optimal design through the transformation of the inner diameter and the stack length when the outer diameter of core is sustaining.

Analysis on the Effect of Arcing Fault and CT Saturation on Distance Algorithms (아크고장 및 CT포화가 거리계전 알고리즘에 미치는 영향분석)

  • Son, Chun-Myung;Kang, Sang-Hee;Kang, Yong-Choel;Rebizant, Waldemar
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.50-52
    • /
    • 2002
  • Distance relays need accurate current and voltage for determining the trip ignition. Therefore we must analyze nonlinear phenomena which cause distortion in signals first of all. This paper presents the effect of some distortion(arcing fault and current transformer saturation) in power system. The saturation of a current transformer distorts input current of a distance relay and arcing faults make current and voltage to be changed. This paper describes modeling methods of a current transformer and arcing faults, and describes the simulation result of two distance relay algorithms (discrete fourier transform and modified differential equation methods)

  • PDF

Flux Saturation Modeling of Matching Transformer for Dynamic Voltage Restore (동적전압보상기를 구성하기 위한 정합변압기의 자속포화현상 모델링)

  • Kim Wang-Rae;Kang Ho-Hyun;Jeon Hee-Jong;Han Woon-Dong;Oh Joong-Min
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.428-431
    • /
    • 2006
  • Matching transformer in Dynamic Voltage Compensator is needed for grid connection and isolation. Flux saturation in transformer will be occurred by voltage of transformer from inverter and DC offset voltage and flux saturation makes over current in transformer. In this paper, mathematical modeling of matching transformer is proposed for flux saturation simulation of Dynamic Voltage Compensator.

  • PDF

Estimation of Delta Winding Current and Its Application to a Compensated-Current-Differential Relay for a Y-Δ Transformer

  • Kang, Yong-Cheol;Lee, Byung-Eun;Jin, En-Shu
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.255-263
    • /
    • 2010
  • The compensated-current-differential relay uses the same restraining current as a conventional relay, but the differential current is modified to compensate for the effects of the exciting current. Delta winding current is necessary to obtain the modified differential current for a $Y-\Delta$ transformer. This paper describes an estimation algorithm of the delta winding current and its application to a compensated-current-differential relay for a $Y-\Delta$ transformer. Prior to saturation, the core-loss current is calculated and used to modify the differential current. When the core first enters saturation, the initial value of the core flux is obtained by inserting the modified differential current into the magnetization curve. This flux value is used to derive the magnetizing current and consequently the modified differential current. The operating performance of the proposed relay was compared against a conventional current differential relay with harmonic blocking. Test results indicate that the proposed relay remained stable during severe magnetic inrush and over-excitation, and its operating time is significantly faster than a conventional relay. The relay is unaffected by the level of remanent flux and does not require an additional restraining or blocking signal to maintain stability. This paper concludes by implementing the proposed algorithm into a prototype relay based on a digital signal processor.

An Advanced Algorithm for Compensating the Secondary Current of CTs (개선된 변류기 2차 전류 보상 알고리즘)

  • 강용철;임의재
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.7
    • /
    • pp.387-392
    • /
    • 2003
  • During a fault the remanent flux in a current transformer (CT) may cause severe saturation of its core. The resulting distortion in the secondary current could cause the mal-operation of a protection relay. This paper proposes an algorithm for compensating for the errors in the secondary current caused by CT saturation and the remanent flux. The algorithm compensates the distorted current irrespective of the level of the remanent flux. The second-difference function of the current is used to detect when the CT first starts to saturate. The negative value of the second-difference function at the start of saturation, which corresponds to the magnetizing current, is inserted into the magnetization curve to obtain the core flux at the instant. This value is then used as an initial flux to calculate the actual flux of the CT during the course of the fault with the secondary current. The magnetizing current is then estimated using the magnetization curve and the calculated flux value. The compensated secondary current can be estimated by adding the magnetizing current to the secondary current. Test results indicate that the algorithm can accurately compensate a severely distorted secondary current signal.

Inrush Current Control of Matching Transformer for Dynamic Voltage Restorer (동적전압보상기를 위한 정합 변압기의 돌입전류 제어)

  • Seo, Il-Dong;Jeon, Hee-Jong;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.340-348
    • /
    • 2006
  • This paper proposes an inrush current control technique of matching transformer for configuration of dynamic voltage restorer(DVR). The DVR system consist of PWM inverter to inject arbitrary voltage, LC low pass filter as harmonic eliminator and matching transformer for isolation. However, the matching transformer has an excess of inrush current by magnetic flux saturation in the core. Due to this inrush current, the rating of matching transformers is double for needed nominal rating for protection of DVR. Therefore, in this paper, the modeling method of magnetic flux saturation is used to analyze a magnitude of inrush current, and additional current controller is used for PWM inverter output regulation. Simulation and experimental results are provided to demonstrate the validity of the proposed control method.