• Title/Summary/Keyword: Current signals

Search Result 1,109, Processing Time 0.021 seconds

Internal Waves and Surface Mixing Observed by CTD and Echo Sounder in the mid-eastern Yellow Sea (황해 중동부해역에서 CTD와 음향탐지기로 관측한 내부파와 표층 혼합)

  • Lee, Sang-Ho;Choi, Byoung-Ju;Jeong, Woo Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.1
    • /
    • pp.1-12
    • /
    • 2013
  • Acoustic backscatter profiles were measured by Eco-sounder along an east-west section in the mid-eastern Yellow Sea and at an anchoring station in the low salinity region off the Keum River estuary in September 2012, with observing physical water property structure by CTD. Tidal front was established around the sand ridge developed in 50 m depth region. Internal waves measured by Eco-sounder during low tide period in the eastern side of the sand ridge were nonlinear depression waves with wave height of 15 m and mean wavelength of 500 m. These waves were interpreted into tidal internal waves that were produced by tidal current flowing over the sand ridge to the southeast. When weakly non-linear soliton model was applied, propagation speed and period of these internal depression wave were 50 m/s and 16~18 min. Red tides by Dinoflagelates Cochlodinium were observed in the sea surface where strong acoustic scattering layer was raised up to 7 m. Hourly CTD profiles taken at the anchoring station off the Keum River estuary showed the halocline depth change by tidal current and land-sea breeze. When tidal current flowed strongly to the northeast during flood period and land-breeze of 7 m/s blew to the west, the halocline was temporally raised up as much as 2 m and acoustic profile images showed a complex structure in the surface layer within 5-m depth: in tens of seconds the declined acoustic structure of strong and weak scattering signals alternatively appeared with entrainment and intrusion shape. These acoustic profile structures in the surface mixed layer were observed for the first time in the coastal sea of the mid-eastern Yellow Sea. The acoustic profile images and turbidity data suggest that relatively transparent low-layer water be intruded or entrained into the turbid upper-layer water by vertical shear between flood current and land breeze-induced surface current.

Double Queue CBOKe Mechanism for Congestion Control (이중 큐 CHOKe 방식을 사용한 혼잡제어)

  • 최기현;신호진;신동렬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11A
    • /
    • pp.867-875
    • /
    • 2003
  • Current end-to-end congestion control depends only on the information of end points (using three duplicate ACK packets) and generally responds slowly to the network congestion. This mechanism can't avoid TCP global synchronization in which TCP congestion window size is fluctuated during congestion period. Furthermore, if RTT(Round Trip Time) is increased, three duplicate ACK packets are not correct congestion signals because congestion might already disappear and the host may send more packets until it receives three duplicate ACK packets. Recently there are increasing interests in solving end-to-end congestion control using AQM(Active Queue Management) to improve the performance of TCP protocols. AQM is a variation of RED-based congestion control. In this paper, we first evaluate the effectiveness of the current AQM schemes such as RED, CHOKe, ARED, FRED and SRED, over traffic with different rates and over traffic with mixed responsive and non-responsive flows, respectively. In particular, CHOKe mechanism shows greater unfairness, especially when more unresponsive flows exist in a shared link. We then propose a new AQM scheme using CHOKe mechanism, called DQC(Double Queue CHOKe), which uses two FIFO queues before applying CHOKe mechanism to adaptive congestion control. Simulation shows that it works well in protecting congestion-sensitive flows from congestion-causing flows and exhibits better performances than other AQM schemes. Also we use partial state information, proposed in LRURED, to improve our mechanism.

Study on GNSS Constellation Combination to Improve the Current and Future Multi-GNSS Navigation Performance

  • Seok, Hyojeong;Yoon, Donghwan;Lim, Cheol Soon;Park, Byungwoon;Seo, Seung-Woo;Park, Jun-Pyo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.2
    • /
    • pp.43-55
    • /
    • 2015
  • In the case of satellite navigation positioning, the shielding of satellite signals is determined by the environment of the region at which a user is located, and the navigation performance is determined accordingly. The accuracy of user position determination varies depending on the dilution of precision (DOP) which is a measuring index for the geometric characteristics of visible satellites; and if the minimum visible satellites are not secured, position determination is impossible. Currently, the GLObal NAvigation Satellite system (GLONASS) of Russia is used to supplement the navigation performance of the Global Positioning System (GPS) in regions where GPS cannot be used. In addition, the European Satellite Navigation System (Galileo) of the European Union, the Chinese Satellite Navigation System (BeiDou) of China, the Quasi-Zenith Satellite System (QZSS) of Japan, and the Indian Regional Navigation Satellite System (IRNSS) of India are aimed to achieve the full operational capability (FOC) operation of the navigation system. Thus, the number of satellites available for navigation would rapidly increase, particularly in the Asian region; and when integrated navigation is performed, the improvement of navigation performance is expected to be much larger than that in other regions. To secure a stable and prompt position solution, GPS-GLONASS integrated navigation is generally performed at present. However, as available satellite navigation systems have been diversified, finding the minimum satellite constellation combination to obtain the best navigation performance has recently become an issue. For this purpose, it is necessary to examine and predict the navigation performance that could be obtained by the addition of the third satellite navigation system in addition to GPS-GLONASS. In this study, the current status of the integrated navigation performance for various satellite constellation combinations was analyzed based on 2014, and the navigation performance in 2020 was predicted based on the FOC plan of the satellite navigation system for each country. For this prediction, the orbital elements and nominal almanac data of satellite navigation systems that can be observed in the Korean Peninsula were organized, and the minimum elevation angle expecting signal shielding was established based on Matlab and the performance was predicted in terms of DOP. In the case of integrated navigation, a time offset determination algorithm needs to be considered in order to estimate the clock error between navigation systems, and it was analyzed using two kinds of methods: a satellite navigation message based estimation method and a receiver based method where a user directly performs estimation. This simulation is expected to be used as an index for the establishment of the minimum satellite constellation for obtaining the best navigation performance.

Diagnosis of Diabetes Using Voltage Analysis Based on EIS (Electro Interstitial Scan) (EIS 기반 전압신호 분석을 통한 당뇨병 진단 가능성 평가)

  • Bae, Jang-Han;Kim, Soochan;Kaewkannate, Kanitthika;Jun, Min-Ho;Kim, Jaeuk U.
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.114-122
    • /
    • 2016
  • EIS (Electro interstitial scan) is a non-invasive and simple method to find the physio-pathological information inferred by electric current response with respect to low direct current applied between remote sites of the body. Although a few EIS-based devices for diagnosing diabetes were commercialized, they were not successful in offering clinical validity nor in confirming diagnostic principle. In this study, we measured the voltage responses of diabetic patients and normal subjects with a commercialized EIS device to test the usefulness of EIS in screening diabetes. For this purpose, voltage was measured between pairs of electrodes contacted at both palm, both soles of the feet and left and right forehead above both eyes. After feature extraction of voltage signals, the AUC (area under the curve) between the two groups was calculated and we found that seven variables were appropriately shown above 60% of accuracy. In addition, we applied the k-NN (k-nearest neighbors) method and found that the accuracy of classification between the two groups reached the accuracy of 76.2%. This result implies that the voltage response analysis based on EIS has potential as a diabetics screening method.

Development of Portable Laryngeal Stroboscope (휴대형 후두 스트로보스콥의 개발)

  • Lee, Jae-Woo;Kwon, Soon-Bok;Lee, Byung-Joo;Lee, Jin-Choon;Goh, Eui-Kyung;Chon, Kyong-Myong;Wang, Soo-Geun;Ro, Jung-Hoon
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.17 no.1
    • /
    • pp.28-37
    • /
    • 2006
  • Purpose: Evaluation of vocal cord vibration is very important in cases of voice disorders. There are several equipments for examining the vocal fold vibration such as laryngeal stroboscope, ultra high-speed digital imaging system, and videokymograph. Among these, laryngeal stroboscope is the most popular equipment because of easy to examine the laryngeal pathology. However, current laryngo-stroboscopes are too bulky to move and relatively expensive. The purpose of this research is to develope a portable laryngeal stroboscope of equivalent performance with the current equipments. Methods and Materials: Recently developed high luminescent white LEDs(light emitting diodes) are placed at the head of the endoscope as light sources for the CCD image sensor which is also placed at the head with imaging lens. This arrangement eliminates the bulky light source like expensive halogen or xenon lamps as well as the optical light guiding cables. The LEDs are controlled to flash in phase with the voice frequency of the examinee. The CCD captures these strobo images and converts them into video signals for examinations. Results: There was no functional differences between preexisting stroboscope and the newly developed stroboscope of this study. LED light sources and microprocessor based control circuits of the stroboscope enabled the development of flicker-less, hand-held, portable and battery-operating stroboscope. Conclusion: The developed stroboscope is cost-effective, small-sized, easy to use and very easy desirable to bring and to use in any place.

  • PDF

Low Complexity Motion Estimation Based on Spatio - Temporal Correlations (시간적-공간적 상관성을 이용한 저 복잡도 움직임 추정)

  • Yoon Hyo-Sun;Kim Mi-Young;Lee Guee-Sang
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.9
    • /
    • pp.1142-1149
    • /
    • 2004
  • Motion Estimation(ME) has been developed to reduce temporal redundancy in digital video signals and increase data compression ratio. ME is an Important part of video encoding systems, since it can significantly affect the output quality of encoded sequences. However, ME requires high computational complexity, it is difficult to apply to real time video transmission. for this reason, motion estimation algorithms with low computational complexity are viable solutions. In this paper, we present an efficient method with low computational complexity based on spatial and temporal correlations of motion vectors. The proposed method uses temporally and spatially correlated motion information, the motion vector of the block with the same coordinate in the reference frame and the motion vectors of neighboring blocks around the current block in the current frame, to decide the search pattern and the location of search starting point adaptively. Experiments show that the image quality improvement of the proposed method over MVFAST (Motion Vector Field Adaptive Search Technique) and PMVFAST (Predictive Motion Vector Field Adaptive Search Technique) is 0.01~0.3(dB) better and the speedup improvement is about 1.12~l.33 times faster which resulted from lower computational complexity.

Arrival Time Estimation for Bus Information System Using Hidden Markov Model (은닉 마르코프 모델을 이용한 버스 정보 시스템의 도착 시간 예측)

  • Park, Chul Young;Kim, Hong Geun;Shin, Chang Sun;Cho, Yong Yun;Park, Jang Woo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.4
    • /
    • pp.189-196
    • /
    • 2017
  • BIS(Bus Information System) provides the different information related to buses including predictions of arriving times at stations. BIS have been deployed almost all cities in our country and played active roles to improve the convenience of public transportation systems. Moving average filters, Kalman filter and regression models have been representative in forecasting the arriving times of buses in current BIS. The accuracy in prediction of arriving times depends largely on the forecasting algorithms and traffic conditions considered when forecasting in BIS. In present BIS, the simple prediction algorithms are used only considering the passage times and distances between stations. The forecasting of arrivals, however, have been influenced by the traffic conditions such as traffic signals, traffic accidents and pedestrians ets., and missing data. To improve the accuracy of bus arriving estimates, there are big troubles in building models including the above problems. Hidden Markov Models have been effective algorithms considering various restrictions above. So, we have built the HMM forecasting models for bus arriving times in the current BIS. When building models, the data collected from Sunchean City at 2015 have been utilized. There are about 2298 stations and 217 routes in Suncheon city. The models are developed differently week days and weekend. And then the models are conformed with the data from different districts and times. We find that our HMM models can provide more accurate forecasting than other existing methods like moving average filters, Kalmam filters, or regression models. In this paper, we propose Hidden Markov Model to obtain more precise and accurate model better than Moving Average Filter, Kalman Filter and regression model. With the help of Hidden Markov Model, two different sections were used to find the pattern and verified using Bootstrap process.

Detection of Magnetic Bacteria Using PHR Sensors with Trilayer Structure (삼층박막 구조의 PHR 센서를 이용한 자기 박테리아 감지)

  • Yoo, Sang Yeob;Lim, Byeong Hwa;Song, In Cheol;Kim, Cheol Gi;Oh, Sun Jong
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.6
    • /
    • pp.200-204
    • /
    • 2013
  • In this study, we have fabricated magnetoresistive sensors of $50{\mu}m{\times}50{\mu}m$ cross type by trilayer structure of antiferromagnetic/nonmagnetic/ferromagnetic. The magnetic signal and magnetic domain of this sensor is measured. The sensor hysteresis loop is not in symmetrical at 0 Oe. This is may be due to the exchange coupling between ferromagnetic layer and anti ferromagnetic layer. This exchange bias value is 20 Oe. The sensor signal is measured at between the applied magnetic field and current. The sensor signal is measured between the applied magnetic field and current at $20^{\circ}$ and $90^{\circ}$ angles. The sensitivity of sensor signals is $20{\mu}V/Oe$ and $7{\mu}V/Oe$ at $20^{\circ}$ and $90^{\circ}$ angles, respectively. In addition, this sensor is also applied for the detection of magnetic bacteria at $20^{\circ}$ angle. From these results, we calculate the stray field of single bacteria is to be $5{\times}10^{-5}$Oe.

Detection of Rapid Atrial Arrhythmias in SQUID Magnetocardiography (스퀴드 심자도 장치를 이용한 심방성 부정맥의 측정)

  • Kim Kiwoong;Kwon Hyukchan;Kim Ki-Dam;Lee Yong-Ho;Kim Jin-Mok;Kim In-Seon;Lim Hyun-Kyoon;Park Yong-Ki;Kim Doo-Sang;Lim Seung-Pyung
    • Progress in Superconductivity
    • /
    • v.7 no.1
    • /
    • pp.28-35
    • /
    • 2005
  • We propose a method to measure atrial arrhythmias (AA) such as atrial fibrillation (Afb) and atrial flutter (Afl) with a SQUID magnetocardiograph (MCG) system. To detect AA is one of challenging topics in MCG. As the AA generally have irregular rhythm and atrio-ventricular conduction, the MCG signal cannot be improved by QRS averaging; therefore a SQUID MCG system having a high SNR is required to measure informative atrial excitation with a single scan. In the case of Afb, diminished f waves are much smaller than normal P waves because the sources are usually located on the posterior wall of the heart. In this study, we utilize an MCG system measuring tangential field components, which is known to be more sensitive to a deeper current source. The average noise spectral density of the whole system in a magnetic shielded room was $10\;fT/{\surd}Hz(a)\;1\;Hz\;and\;5\;fT/{\surd}Hz\;(a)\;100\;Hz$. We measured the MCG signals of patients with chronic Afb and Afl. Before the AA measurement, the comparison between the measurements in supine and prone positions for P waves has been conducted and the experiment gave a result that the supine position is more suitable to measure the atrial excitation. Therefore, the AA was measured in subject's supine position. Clinical potential of AA measurement in MCG is to find an aspect of a reentry circuit and to localize the abnormal stimulation noninvasively. To give useful information about the abnormal excitation, we have developed a method, separative synthetic aperture magnetometry (sSAM). The basic idea of sSAM is to visualize current source distribution corresponding to the atrial excitation, which are separated from the ventricular excitation and the Gaussian sensor noises. By using sSAM, we localized the source of an Afl successfully.

  • PDF

A Low-Voltage Low-Power Analog Front-End IC for Neural Recording Implant Devices (체내 이식 신경 신호 기록 장치를 위한 저전압 저전력 아날로그 Front-End 집적회로)

  • Cha, Hyouk-Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.10
    • /
    • pp.34-39
    • /
    • 2016
  • A low-voltage, low-power analog front-end IC for neural recording implant devices is presented. The proposed IC consists of a low-noise neural amplifier and a programmable active bandpass filter to process neural signals residing in the band of 1 Hz to 5 kHz. The neural amplifier is based on a source-degenerated folded-cascode operational transconductance amplifier (OTA) for good noise performance while the following bandpass filter utilizes a low-power current-mirror based OTA with programmable high-pass cutoff frequencies from 1 Hz to 300 Hz and low-pass cutoff frequencies from 300 Hz to 8 kHz. The total recording analog front-end provides 53.1 dB of voltage gain, $4.68{\mu}Vrms$ of integrated input referred noise within 1 Hz to 10 kHz, and noise efficiency factor of 3.67. The IC is designed using $18-{\mu}m$ CMOS process and consumes a total of $3.2{\mu}W$ at 1-V supply voltage. The layout area of the IC is $0.19 mm^2$.