• Title/Summary/Keyword: Current sensing ratio

Search Result 55, Processing Time 0.028 seconds

High-Current Trench Gate DMOSFET Incorporating Current Sensing FET for Motor Driver Applications

  • Kim, Sang-Gi;Won, Jong-Il;Koo, Jin-Gun;Yang, Yil-Suk;Park, Jong-Moon;Park, Hoon-Soo;Chai, Sang-Hoon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.5
    • /
    • pp.302-305
    • /
    • 2016
  • In this paper, a low on-resistance and high current driving capability trench gate power metal-oxide-semiconductor field-effect transistor (MOSFET) incorporating a current sensing feature is proposed and evaluated. In order to realize higher cell density, higher current driving capability, cost-effective production, and higher reliability, self-aligned trench etching and hydrogen annealing techniques are developed. While maintaining low threshold voltage and simultaneously improving gate oxide integrity, the double-layer gate oxide technology was adapted. The trench gate power MOSFET was designed with a 0.6 μm trench width and 3.0 μm cell pitch. The evaluated on-resistance and breakdown voltage of the device were less than 24 mΩ and 105 V, respectively. The measured sensing ratio was approximately 70:1. Sensing ratio variations depending on the gate applied voltage of 4 V ~ 10 V were less than 5.6%.

High Performance Current-Mode DC-DC Boost Converter in BiCMOS Integrated Circuits

  • Lee, Chan-Soo;Kim, Eui-Jin;Gendensuren, Munkhsuld;Kim, Nam-Soo;Na, Kee-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.6
    • /
    • pp.262-266
    • /
    • 2011
  • A simulation study of a current-mode direct current (DC)-DC boost converter is presented in this paper. This converter, with a fully-integrated power module, is implemented by using bipolar complementary metal-oxide semiconductor (BiCMOS) technology. The current-sensing circuit has an op-amp to achieve high accuracy. With the sense metal-oxide semiconductor field-effect transistor (MOSFET) in the current sensor, the sensed inductor current with the internal ramp signal can be used for feedback control. In addition, BiCMOS technology is applied to the converter, for accurate current sensing and low power consumption. The DC-DC converter is designed with a standard 0.35 ${\mu}m$ BiCMOS process. The off-chip inductor-capacitor (LC) filter is operated with an inductance of 1 mH and a capacitance of 12.5 nF. Simulation results show the high performance of the current-sensing circuit and the validity of the BiCMOS converter. The output voltage is found to be 4.1 V with a ripple ratio of 1.5% at the duty ratio of 0.3. The sensing current is measured to be within 1 mA and follows to fit the order of the aspect ratio, between sensing and power FET.

Current Sensing Circuit of MOSFET Switch for Boost Converter (부스터 변환기를 위한 MOSFET 스위치 전류 감지 회로)

  • Min, Jun-Sik;No, Bo-Mi;Kim, Eui-Jin;Lee, Chan-Soo;Kim, Yeong-Seuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.9
    • /
    • pp.667-670
    • /
    • 2010
  • In this paper, a high voltage current sensing circuit for boost converter is designed and verified by Cadence SPECTRE simulations. The current mirror pair, power and sensing metal-oxide semiconductor field effect transistors (MOSFETs) with size ratio of K, is used in our on-chip current sensing circuit. Very low drain voltages of the current mirror pair should be matched to give accurate current sensing, so a folded-cascode opamp with a PMOS input pair is used in our design. A high voltage high side lateral-diffused MOS transistor (LDMOST) switch is used between the current sensing circuit and power MOSFET to protect the current sensing circuit from the high output voltage. Simulation results using 0.35 ${\mu}m$ BCD process show that current sensing is accurate and the pulse frequency modulation (PFM) boost converter using the proposed current sensing circuit satisfies with the specifications.

A High-Voltage Current-Sensing Circuit for LED Driver IC (LED Driver IC를 위한 고전압 전류감지 회로 설계)

  • Min, Jun-Sik;No, Bo-Mi;Kim, Yeo-Jin;Kim, Yeong-Seuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.14-14
    • /
    • 2010
  • A high voltage current sensing circuit for LED driver IC is designed and verfied by Cadence SPECTRE simulations. The current mirror pair, power and sensing MOSFETs with size ratio of K, is used in our on-chip current sensing circuit. Very low drain voltages of the current mirror pair should be matched to give accurate current sensing, so a folded-cascode opamp with a PMOS input pair is used in our design. A high voltage high side LDMOST switch is used between the current sensing circuit and power MOSFET to protect the current sensing circuit from the high output voltage. Simulation results using 0.35um BCD process show that current sensing is accurate with properly frequency compensated opamp.

  • PDF

Integrated Current-Mode DC-DC Buck Converter with Low-Power Control Circuit

  • Jeong, Hye-Im;Lee, Chan-Soo;Kim, Nam-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.5
    • /
    • pp.235-241
    • /
    • 2013
  • A low power CMOS control circuit is applied in an integrated DC-DC buck converter. The integrated converter is composed of a feedback control circuit and power block with 0.35 ${\mu}m$ CMOS process. A current-sensing circuit is integrated with the sense-FET method in the control circuit. In the current-sensing circuit, a current-mirror is used for a voltage follower in order to reduce power consumption with a smaller chip-size. The N-channel MOS acts as a switching device in the current-sensing circuit where the sensing FET is in parallel with the power MOSFET. The amplifier and comparator are designed to obtain a high gain and a fast transient time. The converter offers well-controlled output and accurately sensed inductor current. Simulation work shows that the current-sensing circuit is operated with an accuracy of higher than 90% and the transient time of the error amplifier is controlled within $75{\mu}sec$. The sensing current is in the range of a few hundred ${\mu}A$ at a frequency of 0.6~2 MHz and an input voltage of 3~5 V. The output voltage is obtained as expected with the ripple ratio within 1%.

A New Sensing and Writing Scheme for MRAM (MRAM을 위한 새로운 데이터 감지 기법과 writing 기법)

  • 고주현;조충현;김대정;민경식;김동명
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.815-818
    • /
    • 2003
  • New sensing and writing schemes for a magneto-resistive random access memory (MRAM) with a twin cell structure are proposed. In order to enhance the cell reliability, a scheme of the low voltage precharge is employed to keep the magneto resistance (MR) ratio constant. Moreover, a common gate amplifier is utilized to provide sufficient voltage signal to the bit line sense amplifiers under the small MR ratio structures. To enhance the writing reliability, a current mode technique with tri-state current drivers is adopted. During write operations, the bit and /bit lines are connected. And 'HIGH' or 'LOW' data is determined in terms of the current direction flowing through the MTJ cell. With the viewpoint of the improved reliability of the cell behavior and sensing margin, HSPICE simulations proved the validity of the proposed schemes.

  • PDF

A Study on the Effective Arc Sensing by the Use of the Weighted-Arc-Current in Flux-Cored Arc Welding for Fillet Joints (가중용접전류를 이용한 FCAW 필릿용접용 아크센싱 알고리즘 연구)

  • 권순창;최재성
    • Journal of Welding and Joining
    • /
    • v.18 no.1
    • /
    • pp.83-90
    • /
    • 2000
  • It was attempted to improve seam-tracking performance by applying a new arc-sensing algorithm for FCAW(flux-cored arc welding) process in fillet joints. For this study the authors have introduced three different weight factors: $\circled1$ arc currents at the weaving end are more weighted, $\circled2$ arc currents are evenly weighted along the weaving, and $\circled3$ arc currents at the weaving center are more weighted. To evaluate the 3 factors the values of signal-to-noise(S/N) ratio has been measured. The values were obtained for various welding conditions with different gaps in horizontal and vertical fillet joints. The test results showed that the S/N ratio of the 1st case was highest which resulted in the best of seam tracking performance. In addition, the comparison between the seam tracking performance in horizontal fillet joints and that in vertical ones has been done, and the result showed that tracking performance in vertical joints was relatively better than that in horizontal joints.

  • PDF

Optical Signal Sampling Based on Compressive Sensing with Adjustable Compression Ratio

  • Zhou, Hongbo;Li, Runcheng;Chi, Hao
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.288-296
    • /
    • 2022
  • We propose and experimentally demonstrate a novel photonic compressive sensing (CS) scheme for acquiring sparse radio frequency signals with adjustable compression ratio in this paper. The sparse signal to be measured and a pseudo-random binary sequence are modulated on consecutively connected chirped pulses. The modulated pulses are compressed into short pulses after propagating through a dispersive element. A programmable optical filter based on spatial light modulator is used to realize spectral segmentation and demultiplexing. After spectral segmentation, the compressed pulses are transformed into several sub-pulses and each of them corresponds to a measurement in CS. The major advantage of the proposed scheme lies in its adjustable compression ratio, which enables the system adaptive to the sparse signals with variable sparsity levels and bandwidths. Experimental demonstration and further simulation results are presented to verify the feasibility and potential of the approach.

A Sensing Scheme Utilizing Current-Mode Comparison for On-Chip DC-DC Converter (온칩 DC-DC 변환기를 위한 전류 비교 방식의 센서)

  • Kim, Hyung-Il;Song, Ha-Sun;Kim, Bum-Soo;Kim, Dae-Jeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.4
    • /
    • pp.86-90
    • /
    • 2007
  • An efficient sensing scheme applicable to DC-DC converters is proposed. The output voltage of the DC-DC converter is fed back and converted to a current signal at the input terminal of the sensor to decide if it is in the tolerable range. The comparison is accomplished by a current push-pull action. With the embedded reference current in the sensor realized from the reference voltage. The advantages of the scheme lie in the fairly accurate and efficient implementation in terms of power consumption and chip size overhead compared with conventional voltage-mode schemes as the major parameter in converting voltage to current is determined by (W/L) aspect ratio of the core transistors. In this paper, a DC-DC converter of 5V output from battery range of 2.2V${\sim}$3.6V adopting the proposed sensing scheme is implemented in a 0.35um CMOS process to prove the validity of the scheme.

Performance of Differential Field Effect Transistors with Porous Gate Metal for Humidity Sensors

  • Lee, Sung-Pil;Chowdhury, Shaestagir
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.434-439
    • /
    • 1999
  • Differential field effect transistors with double gate metal for integrated humidity sensors have been fabricated and the drain current drift characteristics to relative humidity have been investigated. The aspect ratio was 250/50 for both transistors to get the current difference between the sensing device and non-sensing one. The normalized drain current of the fabricated humidity sensitive field effect transistors increases from 0.12 to 0.3, as relative humidity increases from 30% to 90%.

  • PDF