• 제목/요약/키워드: Current response

검색결과 3,688건 처리시간 0.04초

전기철도에서의 고조파 발생과 계통응답특성(I) - 계통응답특성을 중심으로 - (Harmonic Generation and System Response Characteristics in Electrified Railway(I) - Focused on System Response Characteristics -)

  • 오광해;이장무
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 춘계학술대회 논문집
    • /
    • pp.493-498
    • /
    • 2003
  • Harmonic current originating from electric locomotives can be magnified due to the impedance characteristics of power supply circuit and bring about various problems. That is, electromagnetic interference with communication lines, operational trouble in signaling, overheat and/or vibration in power capacitor, mis-operation in protection relay and so on. Therefore, the exact assessment of the harmonic current flow must be undertaken at design and planning stage for the electric traction systems. For these reasons, this study propose a new approach to model and to analyse traction power feeding system focused on system response to current and voltage harmonic(PART I ). Measurements of harmonics are also performed for railway power supply systems under normal operation. Spectrum and distortion analyses in measurement data are variously described in PART II

  • PDF

전기철도에서의 고조파 발생과 계통응답특성(I) - 계통응답특성을 중심으로 - (Harmonic Generation and System Response Characteristics in Electrified Railway(I) - Focused on System Response Characteristics -)

  • 오광해;이장무
    • 한국철도학회논문집
    • /
    • 제7권1호
    • /
    • pp.60-64
    • /
    • 2004
  • Harmonic current originating from electric locomotives can be magnified due to the impedance characteristics of power supply circuit and bring about various problems. That is, electromagnetic interference with communication lines, operational trouble in signaling, overheat and/or vibration in power capacitor, mis-operation in protection relay and so on. Therefore, the exact assessment of the harmonic current flow must be undertaken at design and planning stage for the electric traction systems. for these reasons, this study propose a new approach to model and to analyse traction power feeding system focused on system response to current and voltage harmonic(PART I). Measurements of harmonics are also performed for railway power supply systems under normal operation. Spectrum and distortion analyses in measurement data are variously described in PART II.

스위치드 릴럭턴스 전동기의 히스테리시스 및 PI 전류제어기 응답특성 (A Hysteresis & PI Current Controller Response Characteristic of SRM)

  • 김동희;백원식;김민회
    • 조명전기설비학회논문지
    • /
    • 제21권5호
    • /
    • pp.25-31
    • /
    • 2007
  • 본 논문에서는 스위치드 릴럭턴스 전동기 (SRM)의 히스테리시스 및 PI 전류제어기법의 응답특성에 관해 고찰하였다. SRM의 전류제어를 위해 가장 널리 적용되는 히스테리시스 제어기법은 전류응답특성이 빠르다는 장점이 있으나, 스위칭 주파수의 가변으로 인한 소음이 단점으로 알려져 있다. SRM의 전류제어를 위해 적용되는 다른 전류 제어기법으로는 PI 전류제어기법이 있으나, 비선형적인 특성으로 인해 일반적인 전동기 제어시스템과 같이 몇몇 고정된 변수들로 제어기를 설계하기가 용이하지 않다. 본 논문에서는 제한된 범위 내에서 전동기가 구동된다는 가정하에 선형화를 통한 PI 전류제어기를 설계하였다. 1마력 SRM을 적용하여 전류제어 및 속도제어 실험을 수행하였으며, 실험을 통해 얻어진 데이터는 적용 용도에 적합한 전류제어기법 선정을 위한 참고자료가 될 것으로 사료된다.

Development of a predictive model of the limiting current density of an electrodialysis process using response surface methodology

  • Ali, Mourad Ben Sik;Hamrouni, Bechir
    • Membrane and Water Treatment
    • /
    • 제7권2호
    • /
    • pp.127-141
    • /
    • 2016
  • Electrodialysis (ED) is known to be a useful membrane process for desalination, concentration, separation, and purification in many fields. In this process, it is desirable to work at high current density in order to achieve fast desalination with the lowest possible effective membrane area. In practice, however, operating currents are restricted by the occurrence of concentration polarization phenomena. Many studies showed the occurrence of a limiting current density (LCD). The limiting current density in the electrodialysis process is an important parameter which determines the electrical resistance and the current utilization. Therefore, its reliable determination is required for designing an efficient electrodialysis plant. The purpose of this study is the development of a predictive model of the limiting current density in an electrodialysis process using response surface methodology (RSM). A two-factor central composite design (CCD) of RSM was used to analyze the effect of operation conditions (the initial salt concentration (C) and the linear flow velocity of solution to be treated (u)) on the limiting current density and to establish a regression model. All experiments were carried out on synthetic brackish water solutions using a laboratory scale electrodialysis cell. The limiting current density for each experiment was determined using the Cowan-Brown method. A suitable regression model for predicting LCD within the ranges of variables used was developed based on experimental results. The proposed mathematical quadratic model was simple. Its quality was evaluated by regression analysis and by the Analysis Of Variance, popularly known as the ANOVA.

주상체(柱狀體)의 운동(運動) 및 표류력(漂流力)에 미치는 해류(海流)의 영향(影響) (Current Effect on the Motion and Drift Force of Cylinders Floating in Waves)

  • 이세창
    • 대한조선학회지
    • /
    • 제23권4호
    • /
    • pp.25-34
    • /
    • 1986
  • A two-dimensional linear method has been developed for the motion and the second-order steady force arising from the hydrodynamic coupling between waves and currents in the presence of a body of arbitrary shape. Interaction between the incident wave and current in the absence of the body lies in the realm beyond our interest. A Fredholm integral equation of the second kind is employed in association with the Haskind's potential for a steadily moving source of pulsating strength located in or below the free surface. The numerical calculations at the preliminary stage showed a significant fluctuation of the hydrodynamic forces on the surface-piercing body. The problem is approximately solved by using the asymptotic Green function for $U^2{\rightarrow}0$. The original Green function, however, is applied for the fully submerged body. Numerical calculations are made for a submerged and for a half-immersed circular cylinder and extensively for the mid-ship section of a Lewis-form. Some of the results are compared with other analytical results without any available experimental data. The current has strong influence on roll motion near resonance. When the current opposes the waves, the roll response are generally negligible in the low frequency region. The current has strong influence on roll motion near resonance. When the current opposes the wave, the roll response decreases. When the current and wave come from the same direction, the roll response increases significantly, as the current speed increases. The mean drift forces and moment on the submerged body are more affected by current than those on the semi-immersed circular cylinder or on the ship-like section in the encounter frequency domain.

  • PDF

지반 종류별 응답스펙트럼 평가에 대한 비교 연구 (A Comparative Study on Evaluation of Response spectrum accounting for Soil Types)

  • 김선우;한상환
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.433-438
    • /
    • 2001
  • The response spectrum has been widely used to differentiate the significant characteristics of earthquake ground motion and to evaluate the response of structures under ground shaking. Current design response spectrum is based on Seed, Ugas, and Lysmer's study. (1976) In this study, earthquake ground motion data sets adopted by Seed, Miranda, and Riddell is analyzed regards to soil types. And how earthquake data sets effected the design response spectrum is evaluated using acceleration-displacement response spectrum.

  • PDF

전류모드제어를 적용한 직류전원장치의 해석 및 보상에 관한 연구 (The Analysis and Compensation of DC to DC Converter with Current Mode Controller)

  • 김철진;김영태;송요창
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권5호
    • /
    • pp.230-237
    • /
    • 2003
  • Current mode control has been used for DC to DC converters for over twenty years. There are many different control schemes which use the inductor current signal in one way or another to control the DC to DC converter. In this paper, the state space averaging technique is applied for the analysis of flyback type current mode control circuit. We made real converter for the guarantee of stable output characteristic and proper design of feedback circuit. The validity of proposed method is verified from test result. The improvement of stability is confirmed by sinusoidal signal injection method with isolated transformer. It is known that phase margin is sufficient and gain crossover frequency fc is early 1/5 of switching frequency, fs, from the experimental result with frequency response analyzer.

Measuring electrical parameters of ferroelectric liquid crystals using universal current reversal method

  • Sood, N.;Khosla, S.;Singh, D.;Bawa, S.S.
    • Journal of Information Display
    • /
    • 제12권3호
    • /
    • pp.129-134
    • /
    • 2011
  • The universal current reversal method is used for the simultaneous measurement of response time (${\tau}$), azimuthal angle (${\varphi}_o$), spontaneous polarization ($P_S$), and rotational viscosity (${\gamma}_{\varphi}$) of two ferroelectric liquid crystals (FLCs). The application of AC field in FLCs results in reorientational current, which is further analyzed to obtain various parameters. The variation in the parameters with temperature follows the typical trend predicted by the theory. The theoretical curve fits well into the experimental data. Its comparison with traditional current reversal method is confirmed to address certain limitations of that method.

A Current Sharing Circuit for the Parallel Inverter

  • Lee, Chang-Seok;Kim, Si-Kyung
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.176-181
    • /
    • 1998
  • The parallel inverter is popularly used because of its fault-tolerance capability, high-current outputs at constant voltages and system modularity. The conventional parallel inverter usually employs active and reactive power control of frequency and voltage droop control. However, these approaches have the disadvantages that the response time of parallel inverter control is slow against load and system parameter variation to calculate active, reactive power, frequency and voltage. This paper describes a novel control scheme for power equalization in parallel-connected inverter. The proposed scheme has a fast power balance control response, a simplicity of implementation, and inherent peak current limiting capability since it employees an instantaneous current/voltage control with output voltage and current balance and output voltage regulation. A design procedure for the proposed parallel inverter controller is presented. Furthermore, the proposed control scheme is verified through the experiment in various cases such as the system parameter variation, the control parameter variation and the nonlinear load condition.

  • PDF

Slew-Rate Enhanced Low-Dropout Regulator by Dynamic Current Biasing

  • Jeong, Nam Hwi;Cho, Choon Sik
    • Journal of electromagnetic engineering and science
    • /
    • 제14권4호
    • /
    • pp.376-381
    • /
    • 2014
  • We present a CMOS rail-to-rail class-AB amplifier using dynamic current biasing to improve the delay response of the error amplifier in a low-dropout (LDO) regulator, which is a building block for a wireless power transfer receiver. The response time of conventional error amplifiers deteriorates by slewing due to parasitic capacitance generated at the pass transistor of the LDO regulator. To enhance slewing, an error amplifier with dynamic current biasing was devised. The LDO regulator with the proposed error amplifier was fabricated in a $0.35-{\mu}m$ high-voltage BCDMOS process. We obtained an output voltage of 4 V with a range of input voltages between 4.7 V and 7 V and an output current of up to 212 mA. The settling time during line transient was measured as $9{\mu}s$ for an input variation of 4.7-6 V. In addition, an output capacitor of 100 pF was realized on chip integration.