• Title/Summary/Keyword: Current power generation

Search Result 1,270, Processing Time 0.031 seconds

The Understanding of Elementary School Teachers on the Current Science Issues (현대 사회의 과학 논쟁 주제에 대한 초등 교사의 인식)

  • Jhun, Young-Seok
    • Journal of Korean Elementary Science Education
    • /
    • v.27 no.2
    • /
    • pp.134-143
    • /
    • 2008
  • We investigated the understanding of elementary school teachers on the current science issues. As a first step of the research, we choose 10 science issues which are influencing current society. Then we asked 119 elementary school teachers in Seoul, Inchon and Daejeon how important they think and how much they know the issues. As a result, we found that almost elementary school teachers know much on alternative energy, atomic bomb, nuclear power generation and global warming while they less know about high technology as Korean supersonic trainer($T-5^{TM}$) and Synchrotron radiation accelerator. Also we know that teachers take an interest on the articles about current science issues only for a while and forget to study on the issues for themselves. It is more important than whatever for the teachers to have exact understanding on current science issues in order to make civil society by acquiring the science literacy. Therefore elementary teachers and preliminary teachers should have a chance to study on current science issues. We suggest that teacher communities should be supported to improve the competency by cooperation.

  • PDF

Trap Generation Analysis by Program/Erase Speed Measurements in 50 nm Nand Flash Memory (50nm 급 낸드플래시 메모리에서의 Program/Erase 스피드 측정을 통한 트랩 생성 분석)

  • Kim, Byoung-Taek;Kim, Yong-Seok;Hur, Sung-Hoi;Yoo, Jang-Min;Roh, Yong-Han
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.4
    • /
    • pp.300-304
    • /
    • 2008
  • A novel characterization method was investigated to estimate the trap generation during the program /erase cycles in nand flash memory cell. Utilizing Fowler-Nordheim tunneling current, floating gate potential and oxide electric field, we established a quantitative model which allows the knowledge of threshold voltage (Vth) as a function of either program or erase operation time. Based on our model, the derived results proved that interface trap density (Nit) term is only included in the program operation equation, while both Nit and oxide trap density (Not) term are included in the erase operation equation. The effectiveness of our model was tested using 50 nm nand flash memory cell with floating gate type. Nit and Not were extracted through the analysis of Program/Erase speed with respect to the endurance cycle. Trap generation and cycle numbers showed the power dependency. Finally, with the measurement of the experiment concerning the variation of cell Vth with respect to program/erase cycles, we obtained the novel quantitative model which shows similar results of relationship between experimental values and extracted ones.

Examination of the Cause of Damage to Capacitors for Home Appliances and Analysis of the Heat Generation Mechanism (가전용 커패시터의 소손원인 규명 및 발열 메커니즘 해석)

  • Park, Hyung-Ki;Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.6
    • /
    • pp.13-19
    • /
    • 2011
  • The purpose of this study is to examine the cause of damage to electrolytic capacitors and to present the heat generation mechanism in order to prevent the occurrence of similar problems. From the analysis results of electrolytic capacitors collected from accident sites, the fire causing area can be limited to the primary power supply for the initial accident. From the tests performed by applying overvoltage, surge, etc., it is thought that the fuse, varistor, etc., are not directly related to the accidents that occurred. The analysis of the characteristics using a switching regulator showed that the charge and discharge characteristics fell short of standard values. In addition, it is thought that heated electrolytic capacitors caused thermal stress to nearby resistances, elements, etc. It can be seen that the heat generation is governed by the over-ripple current, application of AC overvoltage, surge input, internal temperature increase, defective airtightness, etc. Therefore, when designing an electrolytic capacitor, it is necessary to comprehensively consider the correct polarity arrangement, appropriate voltage application, correct connection of equivalent series resistance(ESR) and equivalent series inductance(SEL), rapid charge and discharge control, sufficient margin of dielectric tangent, etc.

Study on Theoretical Research to Reduce Fire Risk of Solar Power System (태양광 발전 시스템의 화재 위험 감소 방안에 관한 이론적 연구)

  • Park, Kyong-Jin;Lee, Guen-Cull;Lee, Bong-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.219-224
    • /
    • 2020
  • This study is based on the principle of solar power system and fire breakout. The result of the survey indicates that a solar power system is vulnerable to fire due to lack of maintenance after the installation. Currently the national fire safety agency does not have standards and legal provisions for the installation and maintenance of solar power facilities. Therefore, it increases the risk of fire breakouts as well as possibility of electric shock for the firefighters during fire fighting. This results possible damages to the human and equipments. In this study is proposing an automatic fire extinguishing system to reduce the power generation of solar panels during fire breakouts. Also, propose an over load current alarm system and fire prevention measures for fire fighters. The results of this study will be used as basic data for further fire testing of solar power systems.

Test Results Grid Connection of 120 kW Power Generation System (120 kW급 태양광 발전시스템 설치 및 실 계통연계 운전 결과 평가)

  • Hwang, Jung-Hee;Ahn, Kyo-Sang;Lim, Hee-Cheon;Kim, Su-Chang;Kim, Sin-Sub
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.3
    • /
    • pp.338-346
    • /
    • 2006
  • In this paper, the test results of medium-size(120 kW class) PV system which was installed in the Taeahn thermal power station of Korea Western Power Co., Ltd., were summarized for developing the practical technology to applicate high voltage grid connection PV system. The 120 kW photovoltaic system which was consisted of 1,300 modules, PCS, and 150 kVA transformer station has been operated since Aug. 05, 2005. For verifying the modeling results of PV system, the operation data was compared with modeling results which was executed commercial PSCAD/EMTD and Psim tools. An equivalent circuit model of a solar cell has been also used for solar array modeling. A series of parameters required for array modeling have been estimated from general specification data of a solar module. A PWM voltage source inverter(VIS) and its current control scheme have been analyzed by using P&O (perturbation and Observation) MPPT algorithms technique.

Improving the power of PV module by a surface cooling system (표면냉각을 통한 PV 모듈의 출력 향상에 관한 연구)

  • Kim, Dae-Hyun;Kim, Dong-Jun
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.88-93
    • /
    • 2009
  • This study was conducted to improve the power of PV module using a surface cooling system One of the unique characteristics of PV module is power drop as a module surface temperature increases due to the characteristics of crystalline silicon used in a solar cell. To overcome the output power reduction by temperature effect, module surface cooling using water circulation was performed. By cooling effect, module surface temperature drops maximally $20.3^{\circ}C$ predicting more than 10% power enhancement. Maximum deviation of voltage and current between a control and cooled module differed by 5.1 V and O.9A respectively. The maximum power enhancement by cooling system was 12.4% compared with a control module. In addition, cooling system can wash the module surface by water circulation so that extra power up of PV module can be achieved by removing particles on the surface which interfere solar radiation on the cells. Cooling system, besides, can reduce the maintenance cost and prevent accidents as a safety precaution while cleaning works. This system can be applied to the existing photovoltaic power generation facilities without any difficulties as well.

An Emission-Aware Day-Ahead Power Scheduling System for Internet of Energy

  • Huang, Chenn-Jung;Hu, Kai-Wen;Liu, An-Feng;Chen, Liang-Chun;Chen, Chih-Ting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.4988-5012
    • /
    • 2019
  • As a subset of the Internet of Things, the Internet of Energy (IoE) is expected to tackle the problems faced by the current smart grid framework. Notably, the conventional day-ahead power scheduling of the smart grid should be redesigned in the IoE architecture to take into consideration the intermittence of scattered renewable generations, large amounts of power consumption data, and the uncertainty of the arrival time of electric vehicles (EVs). Accordingly, a day-ahead power scheduling system for the future IoE is proposed in this research to maximize the usage of distributed renewables and reduce carbon emission caused by the traditional power generation. Meanwhile, flexible charging mechanism of EVs is employed to provide preferred charging options for moving EVs and flatten the load profile simultaneously. The simulation results revealed that the proposed power scheduling mechanism not only achieves emission reduction and balances power load and supply effectively, but also fits each individual EV user's preference.

Improving the power of PV module by a surface cooling system (표면냉각시스템을 이용한 PV 모듈의 출력 향상)

  • Lee, Jong-Hwan;Lee, Jae-Ung;Kim, Dong-Jun;Kim, Dae-Hyun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.309-313
    • /
    • 2009
  • This study was conducted to improve the power of PV module using a surface cooling system. One of the unique characteristics of PV module is power drop as a module surface temperature increases due to the characteristics of crystalline silicon used in a solar cell. To overcome the output power reduction by temperature effect, module surface cooling using water circulation was performed. By cooling effect, module surface temperature drops maximally $20.3^{\circ}C$ predicting more than 10% power enhancement. Maximum deviation of voltage and current between a control and cooled module differed by 5.1V and 0.9A respectively. The maximum power enhancement by cooling system was 12.4% compared with a control module. In addition, cooling system can wash the module surface by water circulation so that extra power up of PV module can be achieved by removing particles on the surface which interfere solar radiation on the cells. Cooling system, besides, can reduce the maintenance cost and prevent accidents as a safety precaution while cleaning works. This system can be applied to the existing photovoltaic power generation facilities without any difficulties as well.

  • PDF

A Study on the Single-Phase PWM Rectifier with Neutral Leg (중성점을 가진 단상 PWM 정류기에 관한 연구)

  • 최연옥;김평호;한엄용;이진섭;조금배
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.675-679
    • /
    • 1999
  • A single-phase PWM current source rectifier with a neutral leg is presented and throughly analyzed in this paper. This novel topology is implemented by adding an extra leg a step-down single phase PWM space vector modulation method to reduce the dc output voltage harmonics is proposed. The PWM pattern generation need a digital system. As compared with a conventional single-phase PWM rectifier, over 20% improvement of the total harmonics distortion in the output voltage can be obtained. Different SVM techniques are analyzed for this PWM rectifier and simulation result are presented.

  • PDF

OECD/NEA STUDY ON THE ECONOMICS AND MARKET OF SMALL REACTORS

  • Lokhov, Alexey;Cameron, Ron;Sozoniuk, Vladislav
    • Nuclear Engineering and Technology
    • /
    • v.45 no.6
    • /
    • pp.701-706
    • /
    • 2013
  • According to the OECD/NEA estimates, nuclear power plants (NPPs), whether with a large reactor or with small modular reactors (SMRs), are competitive with many other electricity generation technologies in a significant number of cases, one of the exceptions being natural gas in the USA with the current level of prices. However, SMRs have particular features and requirements setting conditions for their deployment. This paper presents the preliminary analysis by OECD/NEA of the economics, opportunities, and market for small nuclear reactors.