• Title/Summary/Keyword: Current harmonics compensation

Search Result 137, Processing Time 0.03 seconds

DC-link Voltage Control of Grid Connected PV System using Quasi Z-Source Inverter (QZSI를 이용한 계통연계형 태양광발전 시스템의 직류단 전압제어)

  • Park, Jong-Hyoung;Kim, Heung-Geun;Nho, Eui-Cheol;Chun, Tae-Won;Cha, Honnyong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.201-210
    • /
    • 2014
  • In this paper, dc-link voltage control of a grid-connected QZSI is presented. Since the input current of the ZSI is discontinuous, a capacity with relatively large capacitance should be connected to the output of the PV array in order to reduce the current ripple. Due to the presence of the impedance network inductor in series with the PV array, the QZSI can achieve continuous input current flow. Several dc-link voltage control methods are compared and the method for power quality improvement is also presented. The performance of the proposed method is verified through both simulation and experimental results.

Harmonic Elimination and Reactive Power Compensation with a Novel Control Algorithm based Active Power Filter

  • Garanayak, Priyabrat;Panda, Gayadhar
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1619-1627
    • /
    • 2015
  • This paper presents a power system harmonic elimination using the mixed adaptive linear neural network and variable step-size leaky least mean square (ADALINE-VSSLLMS) control algorithm based active power filter (APF). The weight vector of ADALINE along with the variable step-size parameter and leakage coefficient of the VSSLLMS algorithm are automatically adjusted to eliminate harmonics from the distorted load current. For all iteration, the VSSLLMS algorithm selects a new rate of convergence for searching and runs the computations. The adopted shunt-hybrid APF (SHAPF) consists of an APF and a series of 7th tuned passive filter connected to each phase. The performance of the proposed ADALINE-VSSLLMS control algorithm employed for SHAPF is analyzed through a simulation in a MATLAB/Simulink environment. Experimental results of a real-time prototype validate the efficacy of the proposed control algorithm.

Active Power Filter Type Single Phase Uninterruptible Power Supply(UPS) System (단상 전력용 능동필터형 무정전 전원장치)

  • Kim, Je-Hong;Son, Jae-Hyun
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.4
    • /
    • pp.53-59
    • /
    • 1999
  • In this paper, a bi-directional UPS with the performance of active power filter has been proposed. The operation of the proposed system can be divided into two modes, such as the active power filter mode and the battery back-up power mode. To improve the transient response for the effective compensation of harmonics and reactive power in active power filter mode, a novel closed-loop control strategy is used to calculate the reference current instantaneously. Finally, the performance of proposed UPS is verified by the simulation and experimental results.

  • PDF

Induction Motor of Effect for Variation Sag, Swell of Harmonic Order (유도전동기 운전 중 Sag 영향에 의한 고조파 차수 변화)

  • Park, In-Deok;Lee, Seung-Hwan;Kim, Si-Kyung
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.954-955
    • /
    • 2008
  • In this paper, the voltage harmonics are investigated in terms of the voltage sag versus the time constants of electric machinery under the source voltage variation condition. The electric machinery and compensation equipment are established on the proposed design scheme based on voltage quality effect assessment technology. It have been analyzed how the variation of harmonic order, the output current, the DC-Link voltage and the induction motor speed is carried out under the voltage sag and switching frequency variation.

  • PDF

An Active Feedforward Compensation for a Current Harmonics Reduction in Three-phase Grid-connected Inverters with LCL Filter (LCL필터를 가진 3상 계통 연계형 인버터에서의 전류 고조파 감쇄를 위한 능동형 전향보상기법)

  • Park, Byong-Jun;Choi, Ki-Young;Kim, Rae-Young
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.214-215
    • /
    • 2013
  • 본 논문은 계통 연계형 인버터 제어에 있어서 계통 임피던스에 의한 계통전압 왜곡을 분석하고 있다. 특히 계통 연계형 인버터의 설계단계에서는 고려되지 않지만, 실제 시스템 구현 시에는 일반적으로 널리 사용되는 저주파트랜스의 누설 인덕턴스에 의한 영향을 살펴보았다. 계통 임피던스에 의해 계통 전압의 왜곡이 발생하고 이로 인해 저차 고조파 성분의 전류가 계통으로 유입되게 되는데, 본 논문에서는 이 저차 고조파에 대해 분석하고, 이를 감쇄시키는 기법을 소개한다. 제안하는 방법은 1.5kW 전압형 인버터의 시물레이션을 통해 검증하였다.

  • PDF

Four Switch Three-Phase Z-Source Active Power Filter (Four-Switch 3상 Z-소스 능동전력필터)

  • Qiu, Xiao-Dong;Jung, Young-Gook;Lim, Young-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.224-225
    • /
    • 2013
  • This paper describes the four switch three-phase Z-source active power filter. This novel configuration has many advantages like reduction of cost, switching loss and smaller drive circuit. The paper presents an application of direct current control(DCC) method in a three-phase parallel Z-source active power filter to reduce the harmonics generated by the nonlinear load. The compensation principles and dynamics of the system are discussed in detail. The results show that the proposed control strategy is feasible and efficient.

  • PDF

Boost Type PFC Rectifier with Active Power Decoupling Circuit with Repetitive Controller (반복제어기를 적용한 Active Power Decoupling 회로를 갖는 Boost Type PFC 정류기)

  • Hwang, Duck-Hwan;Lee, Jungyong;Cho, Younghoon;Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.6
    • /
    • pp.389-396
    • /
    • 2018
  • This study proposes a control method using a repetitive controller for a boost-type PFC rectifier with an APD circuit structure to improve the current distortion caused by DCM condition. Conventional proportional integral controllers have bandwidth limitations in DCM conditions. The performance improvement of the APD controller in the DCM region is verified through simulations and experiments on the compensation of harmonics by the repetitive controller.

An Implementation of Active Power Filler that Adopts to a Frequency Variation using the VCGIC(Voltage Controlled Generalized Impedance Converter (전압 제어 임피던스 변환기를 이용한 전원주파수 적응형 능동 전력 필터의 구현)

  • Jang, Mok-Sun;Kim, Sang-Hoon;Lee, Hu-Chan;Park, Chong-Yeun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.8
    • /
    • pp.88-95
    • /
    • 2006
  • This paper proposes an analog type Active Power Filter that adapts to the frequency change of a distributed power supply system. The proposed system removes the harmonic currents in the source power by injecting a compensation current that has the same frequency, 180 degree out of phase with the harmonic currents generated by the load. The detection of the harmonics in the source power for creating the compensating current is realized by a PLL(Phase Lock Loop) and a VCGIC(Voltage Controlled Generalized Impedance Converter). The operation of the proposed system is verified by simulation and experiment.

The High Power Active Filter System for Harmonic Compensation of 25kv Electric Railway (25kV 전기철도 고조파 보상을 위한 고전력 능동전력필터 시스템에 관한 연구)

  • Kim, Jae-Chul;Rho, Sung-Chan;Lee, Yoo-Kyung
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6 s.37
    • /
    • pp.761-765
    • /
    • 2006
  • At present, harmonic currents cause serious problems in power conversion system using the semiconductor switching device. Also some of the conversion system provokes harmonic currents against to the main power supply system and causes hindrances for the system. Main power impedance of the traditional LC passive filter method, influences on the filter characteristics and amplifies the harmonics when resonance phenomenon is occurred. And the traditional existing 2 level inverter systems show the limit in capacity of voltage and current in case of occurring sudden load change. So, to solve this problem active filter which uses cascaded H-bridge multi level inverter has been designed and ex-filter system circuits were totally investigated. With multi level active filtering system not only the size of filter but also the size of filter for transformer can be reduced by half and so as to the weight, while the capacity of inverter can be double sized and wave forms can be compensated exactly and precisely. Also by the benefit of the increase in rating capacity, the various currents owing to the load fluctuation can be dealt more steadily. In order to simulate the wave form of harmonics based on the measured data on the AC 25kV high speed Domestic Commercial railway, it was simulated with PSCAD/EMTDC and PSIM. Based on the results of this demonstration, the power supply system and inverter system would be more stable and also promoting its efficiency.

Performance Improvement of a Grid-connected PWM Inverter using a Power Theory (전력 이론을 이용한 계통연계 PWM 인버터 시스템의 성능 개선)

  • Jung, Hea-Gwang;Lee, Kyo-Beum;Kang, Sin-Il;Lee, Hyen-Young;Kwon, Oh-Joeng;Song, Seung-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.319-327
    • /
    • 2008
  • The demand of a three phase PWM inverter for the purpose of power control or grid-connecting is increasing. This inverter is connected to a grid through an L-filter or LCL-filter to reduce the harmonics caused by switching. An LCL-filter can reduce the harmonic of a low switching frequency and generate a satisfactory level of grid side current with a relatively low-inductance than an L-filter. But the additional poles caused by the LC part affects a stability problem due to induced resonance of the system. This paper presents a compensation method using a power theory to improve performance, the designed LCL-filter system and to reduce the stability problems caused by resonance. The effectiveness of the proposed algorithm is verified by simulations and experiments.