• 제목/요약/키워드: Current efficiency

검색결과 6,284건 처리시간 0.096초

Effects of Process Variables on The Electrochemical Recovery of Palladium in A HCl Solution

  • Kim, Min-Seuk;Lee, Jae-Chun;Kim, Won-Baek
    • 자원리싸이클링
    • /
    • 제14권1호
    • /
    • pp.55-63
    • /
    • 2005
  • This study investigated the electrochemical recovery of palladium in a HCl solution that is used for palladium leaching. The high acidity of HCl solution and the low concentration of Pd ions increased the cathodic overpotential and reduced the limiting current density. Lowering the current density produced dense deposits; however, they were under high tensile stress. Raising the temperature affected both the densification and the stress, which enabled the attainment of dense Pd deposits under low stress. Lowering the current density and raising the temperature up to 70$^{\circ}C$ was recommended for the recovery of palladium as sound bulk Pd deposits. Current efficiency was over 85% at the initial stage of recovery may decrease the current efficiency, since a low Pd ion concentration results in a low limiting current density.

신경회로망에 의한 철손을 고려한 SynRM의 새로운 효율 최적화 제어 (A Novel Efficiency Optimization Control of SynRM Considering Iron Loss with Neural Network)

  • 강성준;고재섭;최정식;백정우;장미금;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.776_777
    • /
    • 2009
  • Optimal efficiency control of synchronous reluctance motor(SynRM) is very important in the sense of energy saving and conservation of natural environment because the efficiency of the SynRM is generally lower than that of other types of AC motors. This paper is proposed a novel efficiency optimization control of SynRM considering iron loss using neural network(NN). The optimal current ratio between torque current and exciting current is analytically derived to drive SynRM at maximum efficiency. This paper is proposed an efficiency optimization control for the SynRM which minimizes the copper and iron losses. The design of the speed controller based on adaptive learning mechanism fuzzy-neural networks(ALM-FNN) controller that is implemented using fuzzy control and neural networks. The objective of the efficiency optimization control is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. The control performance of the proposed controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm.

  • PDF

An Input-Powered High-Efficiency Interface Circuit with Zero Standby Power in Energy Harvesting Systems

  • Li, Yani;Zhu, Zhangming;Yang, Yintang;Zhang, Chaolin
    • Journal of Power Electronics
    • /
    • 제15권4호
    • /
    • pp.1131-1138
    • /
    • 2015
  • This study presents an input-powered high-efficiency interface circuit for energy harvesting systems, and introduces a zero standby power design to reduce power consumption significantly while removing the external power supply. This interface circuit is composed of two stages. The first stage voltage doubler uses a positive feedback control loop to improve considerably the conversion speed and efficiency, and boost the output voltage. The second stage active diode adopts a common-grid operational amplifier (op-amp) to remove the influence of offset voltage in the traditional comparator, which eliminates leakage current and broadens bandwidth with low power consumption. The system supplies itself with the harvested energy, which enables it to enter the zero standby mode near the zero crossing points of the input current. Thereafter, high system efficiency and stability are achieved, which saves power consumption. The validity and feasibility of this design is verified by the simulation results based on the 65 nm CMOS process. The minimum input voltage is down to 0.3 V, the maximum voltage efficiency is 99.6% with a DC output current of 75.6 μA, the maximum power efficiency is 98.2% with a DC output current of 40.4 μA, and the maximum output power is 60.48 μW. The power loss of the entire interface circuit is only 18.65 μW, among which, the op-amp consumes only 2.65 μW.

교류전원 구동방식에 의한 형광 OLED의 발광 특성 (Emission Characteristics of Fluorescent OLED with Alternating Current Power Source Driving Method)

  • 서정현;김지현;주성후
    • 한국전기전자재료학회논문지
    • /
    • 제27권2호
    • /
    • pp.104-109
    • /
    • 2014
  • To operate organic light emitting device (OLED) with alternating current (AC) power source without AC/DC(direct current) converter, we fabricated the fluorescent OLED and measured the emission characteristics with AC and DC. The OLED operated by AC showed higher maximum current efficiency of 8.2 cd/A and maximum power efficiency of 8.3 lm/W. But current efficiency and power efficiency of AC driven OLED showed worse than DC driven OLED at high voltage above 10 V. This result can be explained by the peak voltage of AC was $\sqrt{2}$ times than DC, In case of low driving voltage the emission characteristics were improved by the peak voltage of AC, but in case of high driving voltage the emission efficiencies were decreased by the roll off phenomena. Finally, serial OLED arrays using twelve OLEDs driven by AC 110 V showed average voltage of 9.17 V, voltage uniformity of 99.0%, average luminance of $1,175cd/m^2$, luminance uniformity of 94.4%.

교류 음 전압에 따른 형광 OLED의 전계 발광 특성 (Electroluminescent Characteristics of Fluorescent OLED with Alternating Current Negative Voltage)

  • 서정현;양재웅;백경갑;주성후
    • 한국표면공학회지
    • /
    • 제52권2호
    • /
    • pp.72-77
    • /
    • 2019
  • To study the characteristics of AC driven OLED, we fabricated the fluorescent OLEDs and analyzed the electroluminescence characteristics of OLEDs with AC negative voltage. The luminance and the current density of the OLED decreased, and the number and size of the dark spots increased in proportion to the duration time and level of the applied AC negative voltage. The current efficiency of the OLED was improved when high AC negative voltage was applied within a short time. When the AC negative voltage of 10 V was applied for 1 minute, the efficiency was improved by 12.4%. Also, the degradation of luminance and current efficiency due to the duration of light emission was improved in the case of OLED applied for 1 minute with 10 V AC negative voltage. These are expected as a result of the improvement of the leakage current characteristics by eliminating the short-circuit region formed by the defect of the OLED at the AC negative high voltage. As a result, the continuous application of AC negative voltage reduced the luminance and the current density of OLED, but the temporary application of AC negative voltage with the proper time and voltage could improve the efficiency and lifetime of OLED.

The Investigation of COD Treatment and Energy Consumption of Urban Wastewater by a Continuous Electrocoagulation System

  • DEDE SAGSOZ, Yesim;YILMAZ, Alper Erdem;EKMEKYAPAR TORUN, Fatma;KOCADAGISTAN, Beyhan;KUL, Sinan
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권2호
    • /
    • pp.261-268
    • /
    • 2022
  • In this study, electrochemical treatment of urban wastewater with electrical conductivity of 1000 μS cm-1 and chemical oxygen demand of 250 mg L-1 was investigated using the variables of initial pH value, current density and flow rate. Electrocoagulation was used, in which aluminum and stainless steel were selected, as the electrochemical treatment process. The electrocoagulation process was operated in continuous mode. The data obtained in experimental studies show that the best COD removal efficiency occurred in experiments where the initial pH value was 6. The increase in current density from 5 A to 15 A decreased the removal efficiency from 79 to 67%. The increase in flow rate under constant current density also reduced the efficiency of removal as expected. In experiments in which current density and flow rate were examined together, the increase in flow rate allowed the application of higher current densities. This situation led to considerable reductions in energy consumption values, even if the COD removal efficiency did not significantly increase. The high COD removal obtained with the use of high flow rate and high current density indicates that the electrocoagulation process can be used for high flow rate municipal wastewater treatment.

바나듐 레독스-흐름 전지에서 집전체의 전기화학적 특성 (Electrochemical Properties of Current Collector in the All-vanadium Redox Flow Battery)

  • 황갑진;오용환;유철휘;최호상
    • Korean Chemical Engineering Research
    • /
    • 제52권2호
    • /
    • pp.182-186
    • /
    • 2014
  • 두 종류의 집전체(BP, bipolar plate)를 사용하여 바나듐 레독스-흐름 전지(V-RFB, vanadium redox-flow battery)의 성능을 평가하였다. V-RFB의 성능평가는 $60mA/cm^2$의 전류밀도에서 진행하였다. A 집전체를 사용한 V-RFB의 기전력(SOC 100%에서의 OVC)은 1.47V, B 집전체를 사용한 V-RFB의 기전력은 1.54V를 나타냈다. A 집전체를 사용한 V-RFB의 셀 저항은 충전시에 $4.44{\sim}5.00{\Omega}{\cdot}cm^2$을, 방전시에 $3.28{\sim}3.75{\Omega}{\cdot}cm^2$를 보였으며, B 집전체를 사용한 V-RFB의 셀 저항은 충전시에 $4.19{\sim}4.42{\Omega}{\cdot}cm^2$, 방전시에 $4.71{\sim}5.49{\Omega}{\cdot}cm^2$를 나타냈다. 각 집전체를 사용한 V-RFB의 성능은 5회 충방전 실험을 진행하여 평가하였다. A 집전체를 사용한 V-RFB는 평균 전류효율 93.1%, 평균 전압효율 76.8%, 평균 에너지효율 71.4%를 나타냈으며, B 집전체를 사용한 V-RFB는 평균 전류효율 96.4%, 평균 전압효율 73.6%, 평균 에너지효율 71.0%를 나타냈다.

자체 개발한 유기 발광 소자의 효율 측정 시스템 (Self-developed Efficiency Measurement System of Organic Light-Emitting Diodes)

  • 한원근
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.537-538
    • /
    • 2005
  • A way of measuring an efficiency of organic light-emitting diodes are studied. The efficiency is obtained from the current-voltage-luminance characteristics of the devices. Basically, number of charge carriers are obtained from the current-voltage characteristics, and the number of photons are obtained from the current of Si-photodetector. The organic light-emitting diodes are assumed as a lambertian light source and a program is made for calculating the efficiency. A device structure of ITO/TPD/$Alq_3$/Al is manufactured using thermal-vapor evaporation. This device is set into a measuring system and measured the efficiency. The efficiencies are measured using the lab-made program and commercially available equipments. The obtained values are similar to each other within 10% uncertainty.

  • PDF

다중권선 변압기를 이용한 능동형 셀 밸런싱 회로에서 밸런싱 전류 전달 효율을 높이기 위한 변압기 설계 방안 (Transformer Design Methodology to Improve Transfer Efficiency of Balancing Current in Active Cell Balancing Circuit using Multi-Winding Transformer)

  • 이상중;김명호;백주원;정지훈
    • 전력전자학회논문지
    • /
    • 제23권4호
    • /
    • pp.247-255
    • /
    • 2018
  • This paper proposes a transformer design of a direct cell-to-cell active cell balancing circuit with a multi-winding transformer for battery management system (BMS) applications. The coupling coefficient of the multi-winding transformer and the output capacitance of MOSFETs significantly affect the balancing current transfer efficiency of the cell balancing operation. During the operation, the multi-winding transformer stores the energy charged in a specific source cell and subsequently transfers this energy to the target cell. However, the leakage inductance of the multi-winding transformer and the output capacitance of the MOSFET induce an abnormal energy transfer to the non-target cells, thereby degrading the transfer efficiency of the balancing current in each cell balancing operation. The impacts of the balancing current transfer efficiency deterioration are analyzed and a transformer design methodology that considers the coupling coefficient is proposed to enhance the transfer efficiency of the balancing current. The efficiency improvements resulting from the selection of an appropriate coupling coefficient are verified by conducting a simulation and experiment with a 1 W prototype cell balancing circuit.

Simultaneous Removal of Cadmium and Copper from a Binary Solution by Cathodic Deposition Using a Spiral-Wound Woven Wire Meshes Packed Bed Rotating Cylinder Electrode

  • Al-Saady, Fouad A.A.;Abbar, Ali H.
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권1호
    • /
    • pp.58-66
    • /
    • 2021
  • Spiral-wound woven wire meshes packed bed rotating cylinder electrode was used for the simultaneous removal of cadmium (Cd) and copper (Cu) from a binary solution. The effects of weight percent of each metal on the removal and current efficiencies were studied at an operating current of 345A, while the effect of current on the removal efficiency of both metals was investigated at three levels of current (240, 345.and 400 mA). The experiments were carried out at constant rotation speed 800 rpm, pH = 3, and a total concentration of metals (500 ppm). The results showed that the removal efficiency of copper increased from 89% to 99.4% as its weight percent increased from 20% to100%. In a similar fashion, the removal efficiency of cadmium increased from 81% to 97% as its weight percent increased from 20% to100%. The results confirmed that the removal efficiency of any metals declined in the presence of the other. Increasing of current resulted in increasing the removal efficiency of both metals at different weight percents. The results confirmed that current efficiencies for removing of copper and cadmium simultaneously decline with increasing of electrolysis time and weight percent of cadmium or with decreasing the weight percent of copper. Current efficiency was higher at the initial stage of electrolysis for all weight percents of metals. The results showed that the decay of copper concentration was exponential at all weight percents of copper, confirming that the electrodeposition of copper is under mass transfer control in the presence of cadmium. While the decay of cadmium concentration was linear at lower weight percent of cadmium then changed to an exponential behavior at high weight percent of cadmium in the presence of copper.