Browse > Article
http://dx.doi.org/10.33961/jecst.2019.00647

Simultaneous Removal of Cadmium and Copper from a Binary Solution by Cathodic Deposition Using a Spiral-Wound Woven Wire Meshes Packed Bed Rotating Cylinder Electrode  

Al-Saady, Fouad A.A. (Faculty of pharmacy, Al-Mustansriyah University)
Abbar, Ali H. (Chemical Engineering Department, University of Al-Qadisiyah)
Publication Information
Journal of Electrochemical Science and Technology / v.12, no.1, 2021 , pp. 58-66 More about this Journal
Abstract
Spiral-wound woven wire meshes packed bed rotating cylinder electrode was used for the simultaneous removal of cadmium (Cd) and copper (Cu) from a binary solution. The effects of weight percent of each metal on the removal and current efficiencies were studied at an operating current of 345A, while the effect of current on the removal efficiency of both metals was investigated at three levels of current (240, 345.and 400 mA). The experiments were carried out at constant rotation speed 800 rpm, pH = 3, and a total concentration of metals (500 ppm). The results showed that the removal efficiency of copper increased from 89% to 99.4% as its weight percent increased from 20% to100%. In a similar fashion, the removal efficiency of cadmium increased from 81% to 97% as its weight percent increased from 20% to100%. The results confirmed that the removal efficiency of any metals declined in the presence of the other. Increasing of current resulted in increasing the removal efficiency of both metals at different weight percents. The results confirmed that current efficiencies for removing of copper and cadmium simultaneously decline with increasing of electrolysis time and weight percent of cadmium or with decreasing the weight percent of copper. Current efficiency was higher at the initial stage of electrolysis for all weight percents of metals. The results showed that the decay of copper concentration was exponential at all weight percents of copper, confirming that the electrodeposition of copper is under mass transfer control in the presence of cadmium. While the decay of cadmium concentration was linear at lower weight percent of cadmium then changed to an exponential behavior at high weight percent of cadmium in the presence of copper.
Keywords
Copper; Cadmium; Three-Dimensional Electrodes; Rotating Cylinder Electrode; Spiral-Wound Woven; Electrodeposition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. F. Alebrahim, I. A. Khattab, Q. Cai, M. Sanduk, Egyptian journal of petroleum, 2017, 26(2), 225-234.   DOI
2 A. T. S. Walker, A. A. Wragg, Electrochim. Acta, 1977, 22(10), 1129-1134.   DOI
3 V. D. Stankovic, A. A. Wragg, J. Appl. Electrochem, 1995, 25(6), 565-573   DOI
4 G. W. Reade, A. H. Nahle, P. Bond, J. M. Friedrich, F. C. Walsh, Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 2004, 79(9), 935-945.
5 I. A. Khattab, M. F. Alebrahim, M. Sanduk, Research Journal of Pharmaceutical Biological and Chemical Sciences, 2017, 8(3), 273-282.
6 D.M. Ayres, A. P. Davis, P.M. Gietka, Removing Heavy Metals from Wastewater, Engineering Research Centre Report, 1994, 90.
7 F. C. Walsh, Pure and applied chemistry, 2001, 73(12), 1819-1837.   DOI
8 D. Green, R. Perry, Perry's Chemical Engineers' Handbook, 8thed. McGraw-Hill, New York, 2008.
9 M. A. Salam, G. Al-Zhrani, S. A. Kosa, C. R. Chimie, 2012, 15(5) ,398- 408.   DOI
10 P. X. Sheng, Y. P. Ting, J. P. Chen , L. Hong, J. Colloid Interface Science, 2004, 275(1), 131-141.   DOI
11 B. Yu, Y. Zhang, A. Shukla, S. S. Shukla, K. L. Dorris, J. Hazard. Mater, 2000, 80(1-3), 33-42.   DOI
12 V. Ravindran, M. R. Stevens, B. N. Badriyha , M. Pirbazari, Am. Inst. of Chem. Engg. J, 1999, 45(5), 1135-1146.   DOI
13 M. Madhava Rao, A. Ramesh, , G. Purna Chandra Rao, K. Seshaiah, Journal of Hazardous Materials, 2006, 129(1-3),123-129.   DOI
14 F. Patrice Fato, D-W. Li, L.-J. Zhao, K. Qiu, Y. Long, ACS Omega, 2019, 4(4), 7543-7549.   DOI
15 O. J. Esalah, M. E. Weber , J. H. Vera, The Can. J. Chem. Engg, 2000, 78(5), 948-954.   DOI
16 C. A. Toles, W. E. Marshall, Sep. Sci. and Tech, 2002, 37(10), 2369-2383.   DOI
17 F. Fu, Q. Wang, J. Environ. Manage, 2011, 92(3), 407-418.   DOI
18 A. I. Zouboulis, K. A. Matis, B. G. Lanara, C. Loos-Neskovic, Separation Science and Technology, 1997, 32(10), 1755-1767.   DOI
19 L. Canet, M. Ilpide, P. Seta, Sep. Sci. and Tech, 2002, 37(8), 1851-1860.   DOI
20 H. Eccles, Trends in Biotechnology, 1999, 17(12), 462-465.   DOI
21 K. Juttner, U. Galla, H. Schmieder, Electrochimica Acta, 2000, 45(15-16), 2575-2594.   DOI
22 D. Pletcher, F. C. Walsh, Industrial Electrochemistry, Chapman and Hall, New York, 1990.
23 G. A. Tonini, F. R. Martins, P. F. De Almeida PradoMartins, L. A., Ruotolo , J. Chem. Technol. Biotechnol, 2013, 88(5), 800-807.   DOI
24 A. Yaqub, H. Ajab, S. Khan, S. Khan, R. Farooq, Water Quality Research Journal, 2009, 44(2), 183-188.   DOI
25 S. H. Chang, K. S. Wang, P. I. Hu, I. C. Lui, Journal of hazardous materials, 2009, 163(2-3), 544-549.   DOI
26 S. Chellammal, S. Raghu, P. Kalaiselvi, G. Subramanian, Journal of hazardous materials, 2010, 180(1-3), 91-97.   DOI
27 Ma. L. Llovera-Hernandez, A. Alvarez Gallegos, J.A. Hernandez, S. Silva-Martinez, Desalination Water Treat, 2016, 57(48-49), 22809-22817.   DOI
28 C. A. Basha, R. Saravanathamizhan, V. Nandakumar, K. Chitra, C. W. Lee, Chemical Engineering Research and Design, 2013, 91(3), 552-559.   DOI
29 I. A. Khattab, M. F. Shaffei, N. A. Shaaban, H. S. Hussein, S. S. Abd El-Rehim, Egyptian Journal of Petroleum , 2013, 22(1), 199-203.   DOI
30 I. A. Khattab, M. F. Shaffei, N. A. Shaaban, H. S. Hussein, S. S. Abd El-Rehim, Egyptian Journal of Petroleum, 2013, 22(1), 205-210.   DOI
31 A. H. Sulaymon, S. A. M. Mohammed, A. H. Abbar, Desalination Water Treat, 2017, 74, 197-206.   DOI
32 F. C. Walsh, Electrochemistry for a cleaner environment, USA, 1992.
33 D. R. Gabe, J. Appl. Electrochem, 1974, 4(2), 91-108.   DOI
34 A. H. Abbar, R. H. Salman, A. S. Abbas, Chemical Engineering & Processing: Process Intensification, 2018, 127, 10-16.   DOI
35 J. M. Grau, J. M. Bisang, J. Chem. Technol. Biotechnol, 2001, 76(2), 161-168.   DOI
36 J. M. Grau, J. M. Bisang, J. Chem. Technol. Biotechnol, 2003, 78(10), 1032-1037.   DOI
37 G. W. Reade, P. Bond, C. P. de Leon, F. C. Walsh, J. Chem. Techno.l Biotechnol, 2004, 79(9), 946-953.   DOI
38 J. M. Grau, J. M. Bisang, J. Appl. Electrochem, 2007, 37(2), 275-282.   DOI
39 J. M. Grau, J. M. Bisang, J. Chem. Technol. Biotechnol, 2009, 84(7), 1084-1089.   DOI
40 A. H. Abbar, R. H. Salman, A. S. Abbas, Environmental Technology & Innovation, 2019, 13, 233-243.   DOI
41 R. E. Sioda, J. Electroanalytical. Chem. and Interfacial Electrochem., 1976, 70(1), 49-54.   DOI