Browse > Article
http://dx.doi.org/10.33961/jecst.2021.00647

The Investigation of COD Treatment and Energy Consumption of Urban Wastewater by a Continuous Electrocoagulation System  

DEDE SAGSOZ, Yesim (Ataturk University, Department of Environmental Engineering)
YILMAZ, Alper Erdem (Ataturk University, Department of Environmental Engineering)
EKMEKYAPAR TORUN, Fatma (Ataturk University, Department of Environmental Engineering)
KOCADAGISTAN, Beyhan (Ataturk University, Department of Environmental Engineering)
KUL, Sinan (Bayburt University, Department of Emergency Aid and Disaster Management)
Publication Information
Journal of Electrochemical Science and Technology / v.13, no.2, 2022 , pp. 261-268 More about this Journal
Abstract
In this study, electrochemical treatment of urban wastewater with electrical conductivity of 1000 μS cm-1 and chemical oxygen demand of 250 mg L-1 was investigated using the variables of initial pH value, current density and flow rate. Electrocoagulation was used, in which aluminum and stainless steel were selected, as the electrochemical treatment process. The electrocoagulation process was operated in continuous mode. The data obtained in experimental studies show that the best COD removal efficiency occurred in experiments where the initial pH value was 6. The increase in current density from 5 A to 15 A decreased the removal efficiency from 79 to 67%. The increase in flow rate under constant current density also reduced the efficiency of removal as expected. In experiments in which current density and flow rate were examined together, the increase in flow rate allowed the application of higher current densities. This situation led to considerable reductions in energy consumption values, even if the COD removal efficiency did not significantly increase. The high COD removal obtained with the use of high flow rate and high current density indicates that the electrocoagulation process can be used for high flow rate municipal wastewater treatment.
Keywords
Urban wastewater; Continuous electrocoagulation; Current density; Electrocoagulation;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Y. G. Asfaha, A. K. Tekile, F. Zewge, Cleaner Engineering and Technology, 2021, 4, 100261.   DOI
2 N.T. Thuy, N.X. Hoan, D.V. Thanh, P.M. Khoa, N.T. Tai, P.Q.H. Hoang, N.N. Huy, J. Electrochem. Sci. Technol., 2021, 12(1), 21-32.   DOI
3 M.A. Mamelkina, S. Cotillas, E. Lacasa, C. Saez, M.A. Rodrigo, Sep. Purif. Technol., 2017, 182, 87-93.   DOI
4 L. Xu, G. Cao, X. Xu, S. Liu, Q. Huang, J. Environ. Manage., 2017, 204(1), 394-403.   DOI
5 E. Gatsios, J.N. Hahladakis, E. Gidarakos, J. Environ. Manage., 2015, 154, 117-127.   DOI
6 A. Deghles, U. Kurt, Chem. Eng. Process.: Process Intensification, 2016, 104, 43-50.   DOI
7 Y.S. Yildiz, E. Senyigit, S. Irdemez, Neural Comput. Appl., 2013, 23, 1061-1069.   DOI
8 S. Aoudj, A. Khelifa, N. Drouiche, Chemosphere, 2017, 180, 379-387.   DOI
9 M. Kobya, M. Bayramoglu, M. Eyvaz, J. Hazard. Mater., 2007, 148, 311-318.   DOI
10 D. Valero, J.M. Ortiz, V. Garcia, E. Esposito, V. Montiel, A. Aldaz, Chemosphere, 2011, 84, 1290-1295.   DOI
11 A.S. Koparal, Y.S. Yildiz, B. Keskinler, N. Demircioglu, Sep. Purif. Technol., 2008, 59(2), 175-182.   DOI
12 A.M. Ferreira, M. Marchesiello, P.X. Thivel, Sep. Purif. Technol., 2013, 107, 109-117.   DOI
13 M. Kobya, F. Ulu, U. Gebologlu, E. Demirbas, S. Oncel, Sep. Purif. Technol., 2011, 77, 281-293.
14 D.T. Moussa, M.H. El-Naas, M. Nasser, M.J. Al-Marri, J. Environ. Manage., 2017, 186, 24-41.   DOI
15 K. Eryuruk, U. Tezcan Un, U. Bakir Ogutveren, J. Clean. Prod., 2018, 172, 1089-1095   DOI
16 S.G. Segura, M. Maesi, S.G. Eibanda, J.V. Melo, C.A.M. Huitle, J. Electroanal. Chem., 2017, 801, 267-299.   DOI
17 Z. Bingul, S. Irdemez, N. Demircioglu, Int. J. Environ. Anal. Chem., 2021, DOI: 10.1080/03067319.2021.1925261.   DOI
18 U. Tezcan Un, A. Kandemir, N. Erginel, S.E. Ocal, J. Environ. Manage., 2014, 146, 245-250.   DOI
19 S. Camcioglu, B. Ozyurt, H. Hapoglu, Process Saf. Environ. Prot., 2017, 111, 300-319.   DOI
20 APHA, Standarts Methos of Examination of Water and Wastewater, 23rd. Edition, 2017.
21 O. Gokkus, Y.S. Yildiz, Clean Technol. Environ. Policy, 2015, 17, 1717-1725.   DOI
22 C. Thakur, Int. J. Chem. React. Eng., 2021, 19(9), 961-968.   DOI
23 G. Varank, S. Guvenc, A. Demir, Sep. Sci. Technol, 2018, 53(17), 2727-2740.   DOI
24 Q. H. Zhang, W. N. Yang, H. H. Ngo, W. S. Guo, P. K. Jin, S. J. Yang, Q. Wang, X. C. Wang, D. Ao, Environ. Int., 2016, 92, 11-22.   DOI
25 S. Sharma, A. Aygun, H. Simsek, Chemosphere, 2020, 249, 126511.   DOI
26 R. L Vizcaino, C. Saez, P. Canizares, M. A. Rodrigo, Sep. Purif. Technol., 2012, 98, 88-93.   DOI
27 L.S. Thakur, P. Mondal, J. Environ. Manage., 2017, 190, 102-112.   DOI
28 M. Dolati, A. A. Aghapour, H. Khorsandi, S. Karimzade, J. Environ. Chem. Eng., 2017, 5(5), 5150-5156.   DOI
29 G.F.S. Valente, R.C.S. Mendonca, J.A.M. Pereira, L.B. Felix, Sep. Purif. Technol., 2014, 132, 627-633.   DOI
30 R. Perumalsamy, C. Kumaran, and V. Rajamanickam, J. Electrochem. Sci. Technol., 2021, 12(1), 92-100.   DOI
31 S. Irdemez, N. Demircioglu, Y.S. Yildiz, Z. Bingul, Sep. Purif. Technol., 2006, 52, 218-223.   DOI
32 H.Z. Zhao, W. Yang, J. Zhu, J.R. Ni, Chemosphere, 2009 , 74, 1391-1395.   DOI
33 A.E. Yilmaz, R. Boncukcuoglu, M.M. Kocakerim, J. Hazard. Mater., 2007, 149, 475-481.   DOI