• 제목/요약/키워드: Current Total Harmonic Distortion

검색결과 202건 처리시간 0.024초

자여자 풍력 유도발전기의 캐패시터에 따른 고조파 전류의 증폭 (Amplification of Current Harmonics Due to Self-Excitation Capacitors for Wind Induction Generators)

  • 오용;최용성;황종선;이경섭
    • 전기학회논문지P
    • /
    • 제57권2호
    • /
    • pp.192-197
    • /
    • 2008
  • The value of this paper is to use reduced size apparatuses to perform field measurement in order to identify and validate that the harmonic-current effects are due to the presence of self-excitation capacitance connected at stator's terminals of the studied SEIG. This paper has presented the measured electrical quantities of a three-phase $\Delta$-connected wind induction generator (WIG) under sudden connection and disconnection of resistive loads. An intelligent power-system recorder/monitor has been employed to measure three-phase voltages and currents of the studied system at the terminals of the studied WIG and the load. The measured electrical quantities have been analyzed. Total harmonic distortion (THD) of current using cumulative probability density function has been employed to determine the penetration of harmonic distortion at load side. The results show that the harmonic currents generated by the studied WIG can be severely amplified by the connected self-excited capacitance at the stator's terminals.

전류 스위칭 시스템의 CFT 오차 감소에 관한 연구 (A study on the CFT error reduction of switched-current system)

  • 최경진;이해길;신홍규
    • 한국통신학회논문지
    • /
    • 제21권5호
    • /
    • pp.1325-1331
    • /
    • 1996
  • 본 논문에서는 전류 스위칭(switched-current:SI) 시스템에서 THD(total harmonic distortion) 증가 원인인 클럭피드스루(clock feedthrough:CFT) 오차 전압을 감소시키는 새로운 전류 메모리(current-memory) 회로를 제안하였다. 제안한 전류 메모리는 CMOS 상보형의 PMOS 트랜지스터를 이용하여 CFT 오차 전압에 의한 출력 왜곡 전류를 감소시킨다. 제안한 전류 메모리 회로를 $1.2{\mu}{\textrm{m}}$ CMOS 공정을 사용하여 설계하고, 입력으로 전류 크기 $68{\mu}{\textrm{m}}$인 1MHz 정현파 신호를 인가하였다.(샘플링 주파수:20MHz) 모의 실험 결과, 기존의 전류 메모리보다 CFT 오차 전압에 의한 출력 왜곡 전류가 10배 정도 감소를 나타내었으며 신호 대 바이어스 전류비가 0.5(peak signal-to-bias current ratio:i/J)인 1KHz 신호를 인가할 경우 THD는 -57dB이다.

  • PDF

THD의 복소 성분을 이용한 고조파 왜곡 환경에서의 전력 계산 (Computation of Distortion Power Using Complex THD)

  • 최종욱;장길수
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권7호
    • /
    • pp.389-396
    • /
    • 2004
  • This paper introduces a new algorithm to calculate distortion power using complex THD(Total Harmonic Distortion) index. The proposed algorithm involves FFT(Fast Fourier Transform) to compute real and imaginary THDs of voltage and current. Case studies are presented to show the availability of the proposed method.

PSO를 이용한 계통연계형 인버터 전류제어기의 자동조정에 관한 연구 (A Study on Tuning of Current Controller for Grid-connected Inverter Using Particle Swarm Optimization)

  • 안종보;김원곤;황기현;박준호
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권11호
    • /
    • pp.671-679
    • /
    • 2004
  • This paper presents the on-line current controller tuning method of grid-connected inverter using PSO(particle swarm optimization) technique for minimizing the harmonic current. Synchronous frame PI current regulator is commonly used in most distributed generation. However, due to the source voltage distortion, specially in weak AC power system, current may contain large harmonic components, which increase THD(total harmonic distortion) and deteriorates power quality. Therefore, some tuning method is necessary to improve response of current controller. This paper used the PSO technique to tune the current regulator and through simulation and experiments, usefulness of the tuning method has been verified. Especially in simulating the tuning process, ASM(average switching model) of inverter is used to shorten execution time.

Enhanced Variable On-time Control of Critical Conduction Mode Boost Power Factor Correction Converters

  • Kim, Jung-Won;Yi, Je-Hyun;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • 제14권5호
    • /
    • pp.890-898
    • /
    • 2014
  • Critical conduction mode boost power factor correction converters operating at the boundary of continuous conduction mode and discontinuous conduction mode have been widely used for power applications lower than 300W. This paper proposes an enhanced variable on-time control method for the critical conduction mode boost PFC converter to improve the total harmonic distortion characteristic. The inductor current, which varies according to the input voltage, is analyzed in detail and the optimal on-time is obtained to minimize the total harmonic distortion with a digital controller using a TMS320F28335. The switch on-time varies according to the input voltage based on the computed optimal on-time. The performance of the proposed control method is verified by a 100W PFC converter. It is shown that the optimized on-time reduces the total harmonic distortion about 52% (from 10.48% to 5.5%) at 220V when compared to the variable on-time control method.

Comparative Analysis of Current Controls for Boost PFC Converter under Light Load

  • Juil Kim;Yeong-Jun Choi
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권6호
    • /
    • pp.143-151
    • /
    • 2024
  • 본 논문은 부스트 PFC (Power Factor Correction) 컨버터의 경부하시, 컨버터의 인덕터 전류 왜곡을 수학적으로 분석하고 원인을 정의한다. 경부하시 평균 전류 모드제어에서 인덕터 전류가 불연속적으로 도통하게 되어 부정확한 인덕터 전류 평균값이 전류 제어에 반영된다. 예측 전류 모드제어에서는 인덕터 전류에 비해 전류 리플이 상대적으로 커져 전류 왜곡이 심해진다. 또한 모델 예측 전류제어의 경우 인덕터 전류의 첨두치 부근에서 스위치가 OFF된다. 인덕터 전류 왜곡은 total harmonic distortion 증가와 역률 감소를 유발하기 때문에 반드시 해결되어야 한다. 본 논문은 수학적 분석을 기반으로 부스트 PFC 컨버터의 경부하시 전류 왜곡을 완화할 수 있는 설계 절차를 선정한다. 마지막으로 hardware-in-the-loop simulation을 사용하여 경부하시 제어 방법들을 비교분석했다.

유도전동기의 전기적 특성에 미치는 고조파 전류의 영향 (Infuences of Harmonic Current on Electrical Characteristics of an Induction Motor)

  • 박양범;김두현
    • 한국안전학회지
    • /
    • 제20권2호
    • /
    • pp.67-72
    • /
    • 2005
  • This paper proposes the influences of harmonic current on electrical characteristics of an induction motor. Recently, a power system gets more worse as nonlinear load makes harmonics to affect energy lose of system and shorten lift of machines. In this paper, the electrical effect and THD(Total Harmonic Distortion) of harmonic current to an induction motor which is of great use in the industrial fields are measured and analyzed. A power conversion equipment(inverter) is installed to produce harmonics and variable reactors are installed to reduce the harmonics having an effect on the input terminal. Then the effects of the reactors are measured and analyzed. Also average voltage, current, power and 110 by harmonics are analyzed. The results show that Inn is increased by increasing load of the induction motor and installing reactors. And the harmonics affecting the input terminal are decreased by increasing reactor 3[mH] to 6[mH], however, average power of the induction motor is decreased. Therefore, it is very important that reactors should be carefully installed considering the merits and demerits resulting from the installation of reactors.

전기설비의 고조파 분석을 위한 측정 시스템의 개발 (Development of Measurement System for Harmonic Analysis of Electric Equipment)

  • 유재근;이상익;전정채
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 A
    • /
    • pp.259-261
    • /
    • 2002
  • Recently, according to the spread of semiconductor applied technology like motor speed control contrivance, power conversion installation and so on, harmonic ingredients occurred in switching operation flow into a distribution system and increase voltage distortion of distribution system and bring on obstacles like damage, lowering of capability, false operation and so on of various electrical installation. So, in order to consider a countermeasure to limit occurrence quantity of harmonic source, harmonic interception and others, precision measurement and analysis on voltage, current, power, power factor, the each ingredient of harmonic order, the percentage of total harmonic distortion and so forth are needed. In this paper monitoring system to measure and analyze power quality connected with power harmonics was developed and it's performance is verified by measuring and analyzing three-phase voltage and current of R, S, T in the three-phase and four-wire system using the developed measurement system.

  • PDF

단상 계통연계 인버터를 위한 새로운 고조파 보상법 (A Novel Harmonic Compensation Method for the Single Phase Grid Connected Inverters)

  • 칸 아마드 레이안;아쉬라프 모하마드 노만;최우진
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 전력전자학술대회
    • /
    • pp.144-146
    • /
    • 2018
  • In order to meet the harmonics standards such as IEEE 519 and P1547 the output quality of a grid connected inverter should satisfy a certain level of Total Harmonic Distortion (THD) value. However, the output quality of an inverter gets degraded due to the grid voltage harmonics, the dead time effects and the nonlinearity of the switches, which all contributes to a higher THD value of the output. In order to meet the required THD value for the inverter output under the distorted grid condition the use of harmonic controller is essential. In this paper a novel feedforward harmonic compensation method is proposed in order to effectively eliminate the low order harmonics in the inverter current to the grid. In the proposed method, unlike the conventional harmonic control methods, the hamonic components are directly compensated by the feedforward terms generated by the PR controller with the grid current in the stationary frame. The proposed method is simple in implementation but powerful in eliminating the harmonics from the output. The effectiveness of proposed method is verified through the PSIM simulation and the experiments with a 5kW single phase grid connected inverter.

  • PDF

단상 계통연계 인버터를 위한 개선된 고조파 보상법 (An Improved Harmonic Compensation Method for a Single-Phase Grid Connected Inverter)

  • 칸 레이안;최우진
    • 전력전자학회논문지
    • /
    • 제24권3호
    • /
    • pp.215-227
    • /
    • 2019
  • Grid-connected inverters should satisfy a certain level of total harmonic distortion (THD) to meet harmonics standards, such as IEEE 519 and P1547. The output quality of an inverter is typically degraded due to grid voltage harmonics, dead time effects, and the device's turn-on/turn-off delay, which all contribute to increasing the THD value of the output. The use of a harmonic controller is essential to meet the required THD value for inverter output under a distorted grid condition. In this study, an improved feedforward harmonic compensation method is proposed to effectively eliminate low-order harmonics in the inverter current to the grid. In the proposed method, harmonic components are directly compensated through feedforward terms generated by the proportional resonant controller with the grid current in a stationary frame. The proposed method is simple to implement but powerful in eliminating harmonics from the output. The effectiveness of the proposed method is verified through simulation using PSIM software and experiments with a 5 kW single-phase grid-connected inverter.